期刊文献+

Jacobi-Bernstein基变换矩阵的一些性质(英文)

Some Properties of Jacobi-Bernstein Basis Transformation Matrices
下载PDF
导出
摘要 在计算机辅助设计中,经常需要不同形式的曲线、曲面之间的变换,以完成曲线、曲面的降阶以及不同几何造型系统之间数据交换的操作,而这些变换的误差将依赖于相应变换矩阵的条件数。由于这个原因,我们研究了Jacobi-Bernstein矩阵的与其条件数相关的若干性质,而且通过计算变换矩阵与逆变换矩阵的无穷范数我们以显形式给出了这些条件数的上界。我们还给出了这些条件数在CAGD中的应用实例。 In computer-aided design, transformations among ditlerent torms ot curves anu surfaces are often required to carry out operations of degree-reduction of curves and surfaces and data exchanging between different geometric modeling systems. The errors of these transformations would depend on the condition numbers of the corresponding transformation matrices. For this reason, we studied some properties of Jacobi-Bernstein basis transformation matrices related to their condition numbers, and by computing the infinite norms of the transformation matrices and their inverse matrices, we obtained explicit upper bounds to these condition numbers. An example of applications of these condition numbers in CAGD was also provided.
出处 《工程数学学报》 CSCD 北大核心 2009年第4期731-740,共10页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China (60672135)
关键词 矩阵 变换 多项式 条件数 basis matrix transformation polynomial condition number
  • 相关文献

参考文献1

二级参考文献12

  • 1Ruiz-Claeyssen J. et al.. Factor block circulant and periodic solutions of undamped matrix differential equations[J]. Math Appl Comput, 1983,3(1):81-92
  • 2Claeyssen J C R, Leul L A S. Diugonulizution und spectrul decomposition of factor block circulant matrices[J]. Linear Algebra and its Applications, 1988,99:41-61
  • 3Davis P. Circulant Matrices[M]. New York: Wiley & Sons, 1979
  • 4Jiang Zhaolin, Zhou Zhangxin. Circulant Matrices[M]. Chengdu: Chengdu Technology University Publishing Company, 1999
  • 5Stuart J L, Weaver J R. Matrices that commute with a permutation matrix[J]. Linear Algebra and its Applications, 1991,150:255-265
  • 6Jeffrey L. Stuart. Diagonally scaled permutations and circulant matrices[J]. Linear Algebra and its Applications, 1994,212/213:397-411
  • 7Cline R E. Generalized inverses of certain Toeplitz matrices[J]. Linear Algebra and its Applications,1974,8:25-33
  • 8Johnson G. A generalization of N-matrices[J]. Linear Algebra and its Applications, 1982,48:201-217
  • 9Leonard P A. Cyclic relative difference sets[J]. Amer Math Monthly, 1986,93:106-111
  • 10Adams Williamm W, Loustaunau Philippe. An introduction to GrSbner bases[J]. American Mathematical Society, 1994,3:74-85

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部