期刊文献+

基于改进牛顿算法的蛋白质二级结构预测 被引量:1

Protein Secondary Structure Prediction Based on Improved Newton Algorithm
下载PDF
导出
摘要 主要介绍构造性机器学习方法即改进牛顿算法在蛋白质二级结构预测中的应用。针对标准BP算法存在的缺点,讨论用迭代矩阵替换二级微商来改进牛顿算法,实现蛋白质二级结构预测。实验表明,采用基于概率的Profile编码方式,改进牛顿算法正确率可以高达73.68%,与其他预测方法相比有较好的准确性。 Protein secondary structure prediction based on improved Newton algorithm which is a method of structure machine learning is mainly introdued. Considering the disadvantages of standard BP algorithm, it discusses improved Newton algorithm to predict protein secondary structure by using matrix iteration to exchange the secondary differential quotient. The experiment results indicate that the degree of accuracy of prediction results achieves 73.68% by using Profile encoding and it is better than any others.
作者 王建 王彩芸
出处 《现代电子技术》 2009年第14期135-137,共3页 Modern Electronics Technique
基金 内江师范学院院级科研资助项目(06NJZ-5)
关键词 改进牛顿算法 蛋白质二级结构预测 Profile编码 神经网络 improved Newton algorithm protein secondary structure prediction Profile encoding neural network
  • 相关文献

参考文献18

二级参考文献95

共引文献43

同被引文献4

  • 1KURGAN L,RAZIB A A,AGHAKHANI S,et al.CRYSTALP2:sequence-based protein crystallization propensity prediction[J].BMC Structural Biology,2009,9:50-63.
  • 2OVERTON I M,PADOVANI G,GIROLAMI M A,et al.ParCrys:a Parzen window density estimation approach to protein crystallization propensity prediction[J].Bioinformatics,2008,24(7):901-907.
  • 3JAHANDIDEH S,MAHDAVI A.RFCRYS:Sequence-based protein crystallization propensity prediction by means of random forest[J].Journal of Theoretical Biology,2012,306:115-119.
  • 4李秀娟,田川,冯欣.数据挖掘分类技术研究与分析[J].现代电子技术,2010,33(20):86-88. 被引量:11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部