摘要
提出了一种粗糙集的RBF网络表示形式,在集值测度意义下,将粗糙集的语义表达进行了有效的描述,并构造了其自适应自组织的遗传学习机制.其创新性主要表现在:(1)通过RBF网络有效地构造了粗糙集在模式分类中的自适应表示形式;(2)在遗传算法中引入了元进化自调整机制;(3)以粗糙集意义下的非线性映射方式提高了模式分类的计算效率.图3,表1,参4.
In this paper, a kind of RBF network representation form based on rough sets is proposed.Under the meaning of set-valued measure,the semantic expression of rough sets is efficiently described and a genetic learning mechanism with the characteristics of self-adaptation and self-organization is constructed.Compared with existing technics,the originalities of the research work proposed in the paper are mainly in following three aspects:(1)An adapative representation form in pattern classification using rough sets is constructed through RBF network.(2)A self-adjustable mechanism is introduced to the genetic algorithm.(3)The computational efficency has been greatly improved through non-linear mapping under rough sets.3figs.,1tab,4refs.
出处
《湘潭矿业学院学报》
1998年第2期20-23,共4页
Journal of Xiangtan Mining Institute
基金
国家教委图像信息处理与智能控制开放实验室基金
湖南省自然科学基金
关键词
粗糙集
遗传算法
模式分类
RBF网络
rough sets,man-made life,genetic algorithm,pattern classification