期刊文献+

基于信息熵的扩张矩阵的启发式算法 被引量:2

A HEURISTIC ALGORITHM OF EXTENSION MATRIX BASED ON ENTROPY
下载PDF
导出
摘要 示例学习中传统的扩张矩阵理论和启发式算法是建立在正反例子集一致、没有噪音的基础上的.然而实际应用领域中的噪音数据,导致许多归纳能力很差的规则产生.本文提出从统计学的角度,对扩张矩阵理论的定义加以扩充,利用信息熵和拉普拉斯错误估计函数构造了扩张矩阵启发式算法ECA将该算法应用于几个实际领域的学习问题并与示例学习系统AES及AQ15等进行了比较.实验结果表明,ECA生成的规则简单,归纳能力强,较为有效地解换了实际应用中的噪音问题. Traditional extension matrix theory and corresponding heuristic algorithms are based on the consistency of positive and negative examples set. However, many overfitting rules will be produced under the noisy data in application to real-world domains. In this paper, from the view of statistics, the basic definitions of extension matrix theory are extended and a rule description method based on probability is given. In which, the conception induced from the training examples can classify the training examples with a high correct probability (maybe not completely correct), and will give a high predictive correct rate for new examples. The information-theoretic entropy measure and Laplace error rate evaluation functions are applied to the path search in extension matrix, and a heuristic algorithm ECA based on entropy is presented. ECA is also applied to several real-world domains such as sleep examples and handwritten digit recognition, and is compared with AE5 and AQ15. The experimental results show that ECA can produce more simple and efficient rules, and can solve the noisy problem in practical application effectively.
出处 《计算机学报》 EI CSCD 北大核心 1998年第7期619-626,共8页 Chinese Journal of Computers
基金 国家自然科学基金 国际合作项目!彩色匹配 哈工大校科技基金
关键词 示例学习 扩张矩阵 信息熵 机器学习 启发式算法 Learning from examples, extension matrix, entropy, noise
  • 相关文献

参考文献7

  • 1洪家荣.示例学习的扩张矩阵理论[J].计算机学报,1991,14(6):401-410. 被引量:31
  • 2陈彬,计算机学报,1997年,20卷,2期,128页
  • 3钱国良,硕士学位论文,1995年
  • 4Wu X D,Technical Report No. Edinburgh DAI 578,1992年
  • 5洪家荣,第三届全国机器学习研讨会论文集,1991年,56页
  • 6洪家荣,计算机学报,1989年,12卷,2期,123页
  • 7洪家荣,Int J Comput Inf Sci,1985年,14卷,6期,421页

二级参考文献4

  • 1洪家荣,计算机学报,1989年,12卷,2期
  • 2洪家荣,Progress in Machine Language,1987年
  • 3洪家荣,1986年
  • 4洪家荣,Int J Comput Inform Sci,1985年,14卷,6期,421页

共引文献30

同被引文献15

  • 1赵美德,李星原,洪家荣,陈彬.示例学习的广义扩张矩阵算法及其实现[J].计算机学报,1994,17(9):703-707. 被引量:11
  • 2[1]J R Quinlan.Induction of decision trees[J].Mach Learning,1986;1(1):81~106
  • 3[2]Y Yuan,M J Shaw.Induction of fuzzy decision trees[J].Fuzzy Sets Syst,1995 ;69:125~139
  • 4[3]J R Hong.AE1:An extension matrix approximate method for the general covering problem[J].Comput Inform Sci,1985; 14(6) :421~437
  • 5[7]X Z Wang,Y D Wang,X F Xu et al.A new approach to fuzzy rule generation :fuzzy extension matrix[J].Fuzzy Sets Systems,2001; 123:291~306
  • 6[8]UCI Repository of Machine Learning Databases and DomainTheories [Online]ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
  • 7Hong J R.AE1 :Extension matrix approximate method for the general covering problem[J].International Journal of Computer & Information Science, 1985; 14(6) :421~437
  • 8Xindong Wu. Inductive learning:algorithms and frontiers[J].Artificial Intelligence Review,1993; (7) :93~108
  • 9Quinlan J R.C4.5:Programs for machine learning[M].San Mateo,USA: Morgan Kaufmann, 1993
  • 10Utgoff P E,Berkman N C,Clouse J A.Decision tree induction based on efficient tree restructuring[J].Machine Learning, 1997; 29 ( 1 ): 5~44

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部