摘要
文中提出了多阶段模糊决策问题的自底向上的模糊启发式搜索算法FDA*,并证明了只要启发式估价函数h可采纳,则FDA*算法亦可采纳,且定能找到具有最小耗散的最佳决策序列.对于可采纳启发式估价函数h通常难以设计这一问题,文中提出了启发式估价函数的渐进式学习算法Learning-h.证明了通过FDA*算法的大量解题。
Fuzzy backward heuristic search algorithm FDA* is presented for fuzzy multistage decision problems.It is proved that with admissible heuristic evaluation function ,FDA* algorithm is admissible and can always find out the best decision sequence with minimal cost.In terms of the fact that in general an admissible is very difficult to design,the asymptotic learning algorithm Learning for learning is also presented.Learning algorithm has a very important characteristic that as more is learned during FDA* algorithm's problemsolving,with probability 1, Learning algorithm can make a heuristic evaluation function converge to an admissible one.
出处
《计算机研究与发展》
EI
CSCD
北大核心
1998年第7期652-656,共5页
Journal of Computer Research and Development
基金
国家自然科学基金
关键词
模糊决策
启发式搜索算法
学习算法
人工智能
fuzzy multi stage decision,heuristic search algorithm,learning algorithm,converge