期刊文献+

带阻尼项的二阶拟线性非齐次微分方程的振动性判据 被引量:2

Oscillation Criteria for Second-order Quasi-linear Nonhomogeneous Differential Equation with Damping
下载PDF
导出
摘要 主要研究了带强迫项的二阶拟线性微分方程(r(t)|y(′t)|α-1y(′t))′+p(t)|y(′t)|α-1y(′t)+q(t)|y(t)|β-1y(t)=e(t),t≥t0,的振动性问题,给出新的判据,推广和改进了已有的结果. In this paper, some new oscillation criteria are established for second-order quasi-linear nonhomoge- neous differential equation with damping of the form (r(t)|y(′t)|α-1y(′t))′+p(t)|y(′t)|α-1y(′t)+q(t)|y(t)|β-1y(t)=e(t),t≥t0 which improve and extend some rencent results.
作者 邵晶 孟凡伟
出处 《曲阜师范大学学报(自然科学版)》 CAS 2009年第3期19-22,共4页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金资助项目(10771118 10801089) 山东省教育厅科技计划资助项目(J07yh05)
关键词 振动 拟线性 非齐次 带阻尼项 oscillation quasi-linear nonhomogeneous damping
  • 相关文献

参考文献2

二级参考文献12

  • 1徐志庭,马东魁.一类二阶微分方程解的振动性质[J].应用数学,2001,14(S1):212-216. 被引量:5
  • 2邵孝湟,陈文灯,俞元洪.非线性二阶微分方程的振动准则[J].Journal of Mathematical Research and Exposition,1995,15(4):605-610. 被引量:7
  • 3Philos Ch G.Oscillation theorem for linear differential equations of second order[J].Arch Math (Basel),1989,53:482-492.
  • 4Hsu H B,Yeh C C.Oscillation theorems for second-order half-linear differential equations[J].Appl Math Lett,1996,9(6):71-77.
  • 5Li H J,Yeh C C.Nonoscillation criteria for second-order half-linear differential equations[J].Appl Math Lett,1995,8(5):63-70.
  • 6Manojlovic J V.Oscillation criteria for second-order half-linear differential equations[J].Math Comp Modelling,1999,30:109-119.
  • 7Li W T.Inteval oscillation criteria for second order half-linear differential equations[J].Acta Math Sinica,2002,45(3):509-516.
  • 8Wong J S W.Oscillation criteria for second-order nonlinear differential equations involving general means[J].J Math Anal Appl,2000,247:489-505.
  • 9Hardy G H,Littlewood J E,Polya G.Inequalities[M].2nd Edition.Cambridge:Cambrige University Press,1988.
  • 10赵雪芹,高广远.二阶次线性微分方程的振动性[J].曲阜师范大学学报(自然科学版),2003,29(4):27-30. 被引量:1

共引文献6

同被引文献9

  • 1Agarwal R P,Shieh S L,Yeh C C.Oscillation criteria for second-order retarded differential equations[J].Math Comput Model,1997,26:1-11.
  • 2Xu R,Meng F W.Some new oscillation criteria for second order quasi-linear neutral delay differential equations[J].Appl Math Comput,2006,182:797-803.
  • 3Dzˇurina J,Stavroulakis I P.Oscillation criteria for second-order delay differential equations[J].Appl Math Comput,2003,140:445-453.
  • 4Sun Y G,Meng F W.Note on the paper of Dzurina and Stavroulakis[J].Appl Math Comput,2006,174:1634-1641.
  • 5Hardy G H,Littlewood J E,Polya G.Inequalities[M].second ed.Cambridge:Cambridge University Press,1988.
  • 6Kusano T,Naito Y.Oscillation and nonoscillation criteria for second order quasilineardifferential equations[J].Acta Math Hung,1997,76:81-99.
  • 7Kusano T,Naito Y,Ogata A.Strong oscillation and nonoscillation of quasilinear differentialequations of second order[J].Differen Equat Dyn Syst,1994,2:1-10.
  • 8Mervan Pagic, James S W Wong. Two-point oscillations in second-order linear differential equations [ J ]. Differential Equations Applications, 2009, 1: 85-122.
  • 9庄容坤.二阶自共轭微分系统解的Sturm比较定理[J].工程数学学报,1999,16(4):117-120. 被引量:5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部