期刊文献+

复杂自由曲面模型的局部协调设计技术 被引量:1

Local consistent mending technique for complex freeform surface model
下载PDF
导出
摘要 综合应用自由曲面模型的全局美化技术和基于离散边界约束条件及裁剪B样条曲面模型的任意边域曲面填充方法,提出了一种新的针对复杂自由曲面模型的局部协调设计技术.利用可微流形的无穷小变形技术,实现紧公差约束下对点云逼近的多张B样条曲面的全局美化,保证了N边汇交曲面相邻边界处收敛的G1光滑拼接,并改善了模型的整体形状.构造包含汇交点的局部区域来裁剪N边汇交曲面,并基于边界条件的离散化处理和裁剪B样条曲面模型重构局部区域,使得局部重构曲面(即协调曲面)与裁剪汇交曲面之间满足近似G1连续,同时光滑地逼近于局部区域的特征趋势.应用实例表明,该局部协调设计技术能够较好地实现复杂曲面造型和反求工程建模中模型的整体G1连续性和保形性,并且为进一步研究基于局部协调设计的拓扑还原技术奠定了坚实可靠的基础. A new local consistent mending scheme for complex freeform surface model was proposed,by the combined use of global beautification technique for freeform surface model and N-sided hole filling method, which was based on discretization of boundary conditions and trimmed B-spline surface model. Firstly, the infinitesimal deformation technique of differentiable manifold was used to beautify the multiple surfaces approximated to point cloud subject to tight error globally, which could generate convergent G^1 smooth B-spline surfaces and improve the shape of the model. Secondly, the local region containing N-patch corner was clipped off the original multiple surfaces,and then the trimmed area based on discretization of boundary conditions and the trimmed B-spline surface model was reconstructed to satisfy the approximate G^1 continuity with adjacent surfaces while reflecting the feature trend of the original surface. Practical applications illustrate that the presented local consistent mending technique can achieve the global G^1 continuity and the shape preserving in the complex surface modeling and reverse engineering, as well as provide a stable and reliable basis for further research on topology recovery technique.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第6期1118-1123,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50575098)
关键词 计算机辅助几何设计 局部协调逼近 微分流形 自由曲面 曲面重建 反求工程 computer aided geometric design (CAGD) local consistent approximation differential manifold freeform surface surface reconstruction reverse engineering
  • 相关文献

参考文献10

  • 1HAMANN B,JEAN B A.Interactive surface correction based on a local approximation scheme[J].Computer Aided geometric Design,1996,13(4):351-368.
  • 2贾明,吕震,李永青,柯映林.基于B样条曲面裁剪计算的局部协调设计[J].机械工程学报,2003,39(2):74-78. 被引量:12
  • 3柯映林,范树迁.复杂曲面局部协调设计技术[J].计算机辅助设计与图形学学报,2005,17(3):418-424. 被引量:5
  • 4范树迁,李江雄,柯映林.自由曲面模型全局美化技术[J].机械工程学报,2007,43(5):175-181. 被引量:2
  • 5KIMURA M,SAITO T,SHINYA M.Surface deformation with differential geometric structures[J].Computer Aided Geometric Design,1996,13(3):243-256.
  • 6SHI X Q,WANG T J,WU P R,et al.Reconstruction of convergent G1 smooth B-spline surfaces[J].Computer Aided Geometric Design,2004,21(9):893-913.
  • 7WELCH W,WITKIN A.Variational surface modelling[J].ACM SIGGRAPH Computer Graphics,1992,26(2):157-166.
  • 8PARK H,KIM K,LEE S-C.A method for approximate NURBS curve compatibility based on multiple curve refitting[J].Computer Aided Design,2000,32(4):237-252.
  • 9MA W Y,KRUTH J P.Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces[J].Computer Aided Design,1995,27(9):663-675.
  • 10WEISS V,ANDOR L,RENNER G,et al.Advanced surface fitting techniques[J].Computer Aided Geometric Design,2002,19(1):19-42.

二级参考文献35

  • 1Watkins M A. Problems in geometric continuity[J]. ComputerAided Design, 1988, 20(8): 499~502
  • 2Van Wijk J J. Bicubic patches for approximating nonrectangular controlpoint meshes[J]. Computer Aided Geometric Design, 1986, 3(1): 1~13
  • 3Piegl L, Tiller W. Filling nsided regions with NURBS patches[J]. The Visual Computer, 1999,15(1): 77~89
  • 4Wang L, Zhu X, Tang Z. Coons type blended Bspline and its conversion to NURBS surface[J]. Computer & Graphics, 1997,21(3): 297~303
  • 5Peng Q S. An algorithm for finding the intersection lines between two Bspline surfaces[J]. ComputerAided Design, 1984, 14(3): 191~196
  • 6Filip D, Magedson R, Markot R. Surface algorithms using bounds on derivatives[J]. Computer Aided Geometric Design, 1986, 3(4): 295~311
  • 7Barnhill R E, Farin G, Jordan M, et al. Surface/surface intersection[J]. Computer Aided Geometric Design, 1987, 4(1): 3~16
  • 8Sederberg T W, Meyers R J. Loop detection in surface intersections[J]. Computer Aided Geometric Design, 1988, 5(2): 161~171
  • 9Grandine T A, Klein F W. A new approach to the surface intersection problem[J]. Computer Aided Geometric Design, 1997, 14(2): 111~134
  • 10Stürzlinger B W. Efficient ray tracing for Bézier and Bspline surfaces[J]. Computer & Graphics, 1993, 17(4): 423~430

共引文献11

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部