期刊文献+

分布式系统中H_∞滤波的最优融合 被引量:1

Optimal fusion of H_∞ filtering in distributed system
下载PDF
导出
摘要 分布式多传感器系统的一个关键问题是如何在融合中心将各分站的局部估计进行最优融合。分布式Kalm an滤波因其具有分布式估计的诸多优点,并能达到中心式估计的最优性能而受到广泛关注。针对分布式不确定动态系统的H∞滤波给出了最优融合公式,并证明其同样能够达到中心式的融合性能,通过仿真实例验证了该最优融合的有效性。 For distributed multi-sensor system, it is critical to optimally fuse the local estimates in the central processor. Distributed Kalman filtering attracts wide attention because it has many advantages of distributed estimation and can reach the performance of central estimation. The optimal fusion formulation for H∞ filtering in distributed uncertain system is presented, and the performance of the distributed estimation fusion can attain the optimality as same as that of the central estimation is proved. The simulation example shows the effectiveness of the optimal fusion.
出处 《传感器与微系统》 CSCD 北大核心 2009年第7期18-20,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(60574032 10826101) 国家"863"计划资助项目(2006AA12A104) 信息综合控制国家重点实验室项目
关键词 分布式系统 H∞滤波 最优融合 distributed system H∞ filtering optimal fusion
  • 相关文献

参考文献7

  • 1Banavar R.A game theoretic approach to linear dynamic estima-tion[]..1992
  • 2Zhu Y M,Zhang K S,Li X R.Fusion of distributed extended for-getting factor RLS state estimators[].IEEE Transactions onAerospace and Electronic Systems.2008
  • 3Y.M.ZHU.Efficient recursive state estimator for dynamic systems without knowledge of noise covariances[].IEEE Transactions on Aerospace and Electronic Systems.1999
  • 4Gutman P,Velger M.Tracking targets using adaptive kalman filtering[].IEEE Transactions on Aerospace and Electronic Systems.1990
  • 5Zhu Y M.Mu ltisensor D ecision and Estimation Fusion[]..2003
  • 6C Chong,S Mori,K Chang.Distributed Multitarget Multisensor Tracking[].Multitarget-Multisensor Tracking: Applications and Advances.1990
  • 7Simon D.Optimal state estimation[]..2006

同被引文献36

  • 1Rao B S Y, Durrant-whyte H F, Sheen J A. A fully decentralized multi-sensor system for tracking and surveillance[J]. Int J of Robotics Research, 1993, 12(1): 20-44.
  • 2Sanders C W, Tacker E C, Linton T D. A new class of decentralized filters for interconnected systems[J]. IEEE Trans on Automatic Control, 1974, 19(3): 259-262.
  • 3Iflar A. Decentralized estimation and control with overlapping input, state and output decomposition[J]. Automatica, 1993, 29(2): 511-516.
  • 4Spanos D P, Saber R O, Murray M R..Dynamic consensus on mobile networks[C]. Proc of the 16th IFAC World Congress. Prague, 2005.
  • 5Spanos D P, Saber R O, Murray M R. Approximate distributed Kalman filtering in sensor networks with quantifiable performance[C]. Proc of the 4th Int Symposium on Information Processing in Sensor Networks. Los Angeles: IEEE Press, 2005: 133-139.
  • 6Saber R O, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion[C]. Proc of IEEE Conf on Decision and Control. Seville: IEEE Press, 2005: 6698-6703.
  • 7Saber R O. Distributed Kalman filter with embedded consensus filters[C]. Proc of IEEE Conf on Decision and Control. Seville: IEEE Press. 2005: 8179-8184.
  • 8Saber R O. Distributed tracking for mobile sensor networks with information-driven mobility[C]. Proc of American Control Conf. New York: IEEE Press, 2007: 4606-4612.
  • 9Saber R O. Distributed Kalman filtering for sensor networks[C]. Proc of 1EEE Conf on Decision and Control. New Orleans: IEEE Press, 2007: 5492-5498.
  • 10Saber R O. Kalman-consensus filter: Optimality, stability and performance[C]. Proc of IEEE Conf on Decision and Control. Shanghai: IEEE Press, 2009: 7032-7046.

引证文献1

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部