期刊文献+

基于CDAN技术与BP算法的棉花病虫害入侵检测-预报系统模型

The model of cotton intrusion detection system based on the CDAN technology and BP algorithm
下载PDF
导出
摘要 为了提高棉花生产的信息化和棉花病虫害预报的效率与智能性,针对棉花病虫害入侵产生因素的多维性,对棉花叶面信息表现的时序、棉花叶面的状态在时间和空间域中表现出的紧密相关性进行了分析,把人工神经网中的BP神经网络算法和信息安全领域中的入侵检测技术CDAN引进来,构造成基于CDAN技术与BP神经网络的棉花病虫入侵检测-预报系统。 In order to enhance the information of the cotton production and the efficiency and intelligence of agricultural plant disease forecast, in term of the multi-dimensional factors caused the disease and the insect pest intrusion to the cotton, it carried on the analysis to the time thread of the information displayed by the cotton leaves and the closed relevance between the time and the spatial domain of the leaves. By introducing the BP neural network algorithm and the CDAN technology of intrusion detection from the domain of the information, made this system.
出处 《广东农业科学》 CAS CSCD 北大核心 2009年第7期228-230,236,共4页 Guangdong Agricultural Sciences
关键词 病虫入侵检测 BP神经网络 异常检测 规则库 门限检测 时序 pest and diseases intrusion detection BP neural network anomaly detection rule set threshold detection time thread
  • 相关文献

参考文献2

二级参考文献11

  • 1王士同 陈慧萍 赵跃华 钱旭.人工智能教程[M].北京:电子工业出版社,2002..
  • 2Cohen WW. Fast effective rule induction[A]. Machine Learning- the 12th International Conference[C].Morgan Kaufumann, 1995.
  • 3Taembaum A S. Computer Networks [M]. New York: Prentice Hall Inc, 1996.
  • 4Roesch M, Yarochkin F, Ruiu D. SNORT FAQ Version 1.8[S], 2002.
  • 5Ptacek TH, Newsham TN. Insertion, Evasion, and Denial of Service- Eluding Network Intrusion Detection[Z]. Secure Networks, Inc, 1998.
  • 6NorthcuttS 余青霓译.网络入侵检测分析员手册[M].北京:人民邮电出版社,2000.10.
  • 7毛德操 胡希明.Linux内核源代码情景分析[M].杭州:浙江大学出版社,2001..
  • 8Forrest S,Hofmeyr S A.A Sense of Self for Unix Processes.In: Proceedings of 1996 IEEE Symposium on Coputer Security and Privacy,1996:120-128.
  • 9Choy J,Cho S.Intrusion Detection by Combing Multiple Hidden Markov Models.In: Lecture Note in Artificial Intelligence,2000,1886:839.
  • 10Lee W,Stolfo S,Chan P.Learning Patterns from Unix Process Execution Traces for Intrusion Detection.In: Proceedings of AAAI Workshop: AI Approaches to Fraud Detection and Risk Management,1997: 191-197.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部