期刊文献+

非锥凸最优化问题中的可行距离

Feasible Distance in Non-conic Convex Optimization Problems
下载PDF
导出
摘要 当一般的非锥凸最优化问题或其对偶不可行时,通过引入可行距离这一概念,讨论新系统的可行性,并考察了在新系统中可行距离的性质,得到了与其等价的可计算的优化形式. When a non-conic convex optimization problem or its dual was infeasible, we considered the feasibility for the new system by introducing a concept of feasible distance. Moreover, we investigated the properties and obtained the equivalent optimization formulations with tractability for the feasible distance.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第7期85-88,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(10771057)
关键词 非锥凸最优化 可行距离 等价优化形式 non-conic convex optimization feasible distance tractable optimization formulations
  • 相关文献

参考文献9

  • 1FREUND R M,VERA J R.Some characterizations and properties of the distance to ill-posedness and the condition measure of a conic linear system[J].Math Programming,1999,86:225-260.
  • 2FREUND R M,VERA J R.Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm[J].SIAM J Optim,1999,10:155-176.
  • 3ORDONEZ F.On the explanatory value of condition numbers for convex optimization:theoretical issues and computational experience[D].Thesis Massachusetts Institute of Technology,2002.
  • 4PENA J,RENEGAR J.Computing approximate solutions for convex conic systems of constraints[J].Math Programming,2001,87:351-383.
  • 5RENEGAR J.Some perturbation theory for linear programming[J].Math Programming,1994,65:73-91.
  • 6RENEGAR J.Incorporating condition measures into the complexity theory of linear programming[J].SIAM J Optim,1995,5:506-524.
  • 7RENEGAR J.Linear programming,complexity theory and elementary functional analysis[J].Math Programming,1995,70:279-351.
  • 8FREUND R M,ORDONEZ F.On an extension of conditional number theory to nonconic convex optimization[J].Math Oper Res,2005,30:173-194.
  • 9张恭庆,林源渠.泛函分析讲义[M].北京:北京大学出版社,2000.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部