期刊文献+

弹塑性有限变形的广义Prandtl_Reuss本构方程和应力共旋率研究 被引量:2

Study on the Generalized Prandtl-Reuss Constitutive Equation and the Corotational Rates of Stress Tensor
下载PDF
导出
摘要 本文通过一种新的途径研究弹塑性有限变形的广义Prandtl_Reus本构方程·研究表明对于广义Prandtl_Reus本构方程,变形率弹塑性和分解的假设并非必须·研究了采用物质共旋率的广义Prandtl_Reus本构方程,从理论上分析了简单剪切应力振荡的原因·提出一种用于构造广义Prandtl_Reus本构方程中应力和背应力共旋率的修正相对旋率·最后,对简单剪切变形进行应力计算· n this paper, the generalized Prandtl-Reuss(P-R) constitutive equations of elastic-plastic material in the presence of finite deformations through a new approach are studied. It analyzes the generalized P-R equation based on the material corotational rate and clarifies the puzzling problem of the simple shear stress oscillation mentioned in some literature. The paper proposes a modified relative rotational rate with which to constitute the objective rates of stress in the generalized P-R equation and concludes that the decomposition of total deformation rate into elastic and plastic parts is not necessary in developing the generalized P-R equations. Finally, the stresses of simple shear deformation are worked out.
出处 《应用数学和力学》 CSCD 北大核心 1998年第8期689-696,共8页 Applied Mathematics and Mechanics
关键词 弹塑性有限变形 应力共旋率 变形 P-R本构方程 finite elastic-plastic deformations, generalized Prandtl-Reuss constitutive equations, the corotational rates of stress tensor, simple shear stress oscillation
  • 相关文献

参考文献1

  • 1Sowerby R,Int J Solids Struct,1984年,20卷,11/12期,1037页

同被引文献29

  • 1胡平,连建设,李运兴.弹塑性有限变形的拟流动理论[J].力学学报,1994,26(3):275-283. 被引量:13
  • 2程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):1-9. 被引量:86
  • 3刘慈群.非牛顿流体的广义Maxwell模型及其解[J].力学与实践,1995,17(2):21-23. 被引量:2
  • 4王明洋,钱七虎.爆炸应力波通过节理裂隙带的衰减规律[J].岩土工程学报,1995,17(2):42-46. 被引量:84
  • 5M.P.Bendsoe and N.Kikuchi. Generating optimal topology in structural design using a homogenization method [J]. Comput Meth Appl Mech Engng, 1988,71(1):197-224.
  • 6R.J .Yang and C.H.Chuang. Optimal topology design using programming[J]. Computers & Structures, 1994,52(2):265-275.
  • 7H.A.Eschenauer, V.V.Kobelev and A.Schumacher. Bubble method for topology and shape optimization of structures[J].Struct Opt, 1994,8(1):42-51.
  • 8C.S.Jog, R.B.Haber and M.P.Bendsoe. Topology design with optimized, self-adaptive materials[J]. Int J Numer Meth Engng, 1994,37:1323-1350.
  • 9Y.M.Xie and G.P.Steven. A simple evolutionary procedure for structural optimization[J]. Computers and Structures , 1993,49(5):885-896.
  • 10C. C.Swan and Iku Kosaka. Voigt-Reuss topology optimaization for structures with nonlinear material behaviors[J].Int J Numer Meth Engng,1997,40(4):3785-3814.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部