期刊文献+

时态查询语言的并发Lambek演算及范畴语法 被引量:3

Concurrence Lambek calculus and its categorical grammar in temporal querying languages
下载PDF
导出
摘要 时态逻辑不可递归公理化的性质,造成它的公理化系统和证明论方法不适于时态查询语言的建模.这使得时态逻辑无法利用公理化系统的良好性质及相关证明论方法对时态数据库的推理和查询做更为严谨和细致地刻画.因此寻找时态逻辑的替代者,以公理化的方式对时态查询语言做句法和语义的分析是必要的.考虑的2个主要工具是作为句法分析工具的以Lambek演算为核心的范畴语法系统,和作为语义分析工具的类型演算λ-演算.这主要是基于类型论的演算特点、SQL语句与陈述句的相似性、Lambek演算和λ-演算的公理化与证明论方法,及它们作为句法和语义分析工具之间的密切联系与对应性决定的.据此从Lambek演算出发,结合时态的处理,构建了并发的Lambek演算(LCTQ)及相应的范畴语法,对以公理化系统为基础的时态查询语言的句法分析做相关研究,并从证明论性质上保障了计算性资源,使得系统更为严谨和完善. Axiomatic systems and proof methods for temporal logic have so far found relatively few applications in querying language modeling of temporal databases because the standard temporal logic is not recursively axiomatizable. As a result, temporal logic can not use axiomatic systems and proof methods to religiously depict inference and querying of a temporal database. Thus it is necessary to find a replacement for temporal logic which, by axiomatic methods, can become the implement of a syntactic and semantic analysis of temporal querying languages. The Lambek calculus and its categorical grammar as the former and k-calculus as the latter have become those substitutes in this paper, because of the properties of type theory, the comparability between SQL and state sentence, the axiomatic and proof methods of Lambek calculus and k-calculus, and their correspondence by Curry-Howard Isomorphism. So, according to the operations of temporality, we built a new axiomatic system used in syntactic analysis which is called concurrence Lambek calculus ( LCTQ ) , and use its categorial grammar to deal with the temporal querying language. Prof theory shows that for protection of computable resources, LCTQ is more regorous and ideal.
出处 《智能系统学报》 2009年第3期245-250,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60673135 60373081) 国家自然科学基金重点资助项目(60736020) 广东省自然科学基金资助项目(7003721) 广东省科技攻关资助项目(07B010200052) 广州市科技计划资助项目(07Z3-D3191)
关键词 时态查询语言 句法分析 并发的Lambek演算 范畴语法 temporal querying language syntactic analysis concurrence Lambek calculus categorial grammars
  • 相关文献

参考文献18

  • 1CHOMICKI J,TOMAN D.Temporal logic information systems[M]//CHOMICKI J,SAAKE G.Logics for databases and information systems.Norwell,USA:Kluwer Academic Publishers,1998:31-70.
  • 2GABBAY D M,HODKINSON I,REYNOLDS M.Temporal logic:mathematical foundations and computational aspects[M].New York,USA:Oxford University Press,1994.
  • 3BUSZKOWSKI W.Categorial grammars and substructural logics[C]//Proceedings of the 5th International Conference on Logic and Cognition.Guangzhou,China,2006.
  • 4RESTALL G.An introduction to substructural logics[M].New York,USA:Routledge,2000.
  • 5JGER G.Anaphora and type logical grammar[M].Dordrecht,the Netherlands:Springer,2005.
  • 6LAMBEK J.The mathematics of sentence structure[J].The American Mathematical Monthly,1958,65:154-170.
  • 7BARENDEGT H P.The lambda calculus:its syntax and semantics:volume 103 of studies in logic and the foundations of mathematics[M].Amsterdam,the Netherlands:Elsevier,1984.
  • 8PENTUS M.Lambek grammars are context-free[C]//Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science.Montreal,Canada,1993:429-433.
  • 9PENTUS M.Lambek calculus is L-complete:Report LP 93-14[R].Amsterdam:Institute for Logic,Language and Computation,University of Amsterdam,1993.
  • 10PENTUS M.Models for the Lambek calculus[J].Annals of Pure and Applied Logic,1995,75 (1/2):179-213.

同被引文献35

  • 1邹崇理.多模态范畴逻辑研究[J].哲学研究,2006(9):115-121. 被引量:12
  • 2Atkinson J,Matamala J.Evolutionary Shallow Natural Lan-guage Parsing[J].Computational Intelligence,2012,28(2):156-175.
  • 3Lambek J.The Mathematics of Sentence Structure[J].The A-merican Mathematical Monthly,1958,3(65):153-169.
  • 4Kozak M.Cyclic Involutive Distributive Full Lambek Calculus is Decidable[J].Journal of Logic and Computation,2011,21(2):231-252.
  • 5Surarso B,Ono H.Cut elimination in noncommutative substructurallogics[J].Reports on Mathematical Logic,1996,0:13-29.
  • 6Buszkowski W,Lin Zhe.Pregroup Grammars with Letter Promotions[J].Language and Automata Theory and Applications,2010,6031:130-141.
  • 7Bernardi,Moortgat.Continuation semantics for the Lambek-Grishin calculus[J].Information & Computation,2010,208(5):397-416.
  • 8Bitter C,Elizondo D A,Yang Ying-jie.Natural language processing:a prolog perspective[J].Artificial Intelligence Review,2010,33(1/2):151-173.
  • 9Lin Zhe.Modal Nonassociative Lambek Calculus with Assumptions:Complexity and Context-Freeness[J].Language and Automata Theory and Applications,2010,6031:414-425.
  • 10Buszkowski W,Lin Zhe,Moroz K.Pregroup Grammars withLetter Promotions:Complexity and context-freeness[J].Journal of Computer and System Science,2012,7351,78(6):1899-1909.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部