期刊文献+

基于抗体浓度和亲合度的关联规则挖掘算法

Association rule algorithm based on concentration and affinity of antibodies
下载PDF
导出
摘要 关联规则是数据挖掘的重要模式之一,有着极其重要的应用价值。基于抗体浓度和亲合度的选择策略,提出了一种克隆模拟退火遗传挖掘算法。该挖掘算法先通过克隆操作来产生一组新的抗体,然后再独立地对所产生的抗体进行变异和克隆选择操作,从而求得问题的最优解。实验结果表明该算法能高效地解决关联规则挖掘问题。 Association rule is one of the important models of data mining,and has the most significant application value.This paper combining with the concentration and affinity of antibodies,brings forward a method of mining association rules based on clonal simulated annealing genetic algorithm.It first generates a new group of individuals through elonal operation,and makes mutation/selection independently with all the generated individuals respectively.Experiment results demonstrate that this method can solve association rule mining effectively.
作者 詹芹 廖慧芬
出处 《计算机工程与应用》 CSCD 北大核心 2009年第21期147-149,共3页 Computer Engineering and Applications
关键词 数据挖掘 关联规则 抗体浓度 亲合度 data mining association rule concentration of antibodies affinity
  • 相关文献

参考文献7

二级参考文献44

  • 1王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 2贾彩燕 倪现君.关联规则挖掘研究述评[J].计算机科学,2003,30(4):145-148.
  • 3FAYYAD U,et al. The KDD process for extracting useful knowledge from volumes of data[J].Communication of the ACM,1996,39(11):27-35.
  • 4KAMRANI A, WANG R, GONZALEZ R.A Genetic algorithm methodology for data mining and intelligent knowledge acquisition[J]. Computers and Industrial Engineering: An International Journal, 2001, (40), 361-377.
  • 5SARAWAGI S, THOMAS S, AGRAWAL R. Integrating association rule mining with relational database systems:alternatives and implications[J].Data Mining and Knowledge Discovery, 2000,4(2/3):89-125.
  • 6HandD MannilarH SmythP.数据挖掘原理[M].北京:机械工业出版社,2003..
  • 7Agrawal R,Imielinski T,Swami A..Mining association rules between sets of items in large databases.In:Proceedings of the ACM SIGMOD'93,Washington,DC,1993,207~216
  • 8Agrawal R,Srikant R..Fast algorithms for mining association rules.In:Proceedings of the VLDB'94,Santiago,Chile,1994,487~499
  • 9Zaki M.J,Hsiao C.-J..CHARM:An efficient algorithm for closed association rule mining.Computer Science Department,Rensselaer Polytechnic Institute,Troy,NY:Technical Report 99-10,1999
  • 10Han J,Pei J,Yin Y..Mining frequent patterns without candidate generation.In:Proceedings of the ACM SIGMOD' 00,Dallas,TX,2000,1~12

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部