摘要
为了解决传统遗传算法易陷入局部最优解的问题,在多父体杂交算法和差分进化算法的基础上,提出了混合差分演化算法。该算法的核心在于,采用多父体杂交算子保证算法的遍历性,通过淘汰相同个体来保持群体的多样性,并以较小概率随机选取部分个体进行差分进化操作,从而充分利用最优个体的信息达到了加快收敛速度的目的。对复杂函数的寻优实验验证了混合差分演化算法的有效性。
A hybrid differential evolutionary algorithm was proposed to avoid trapping local optimum. The algorithm is based on multi-parent crossover and differential evolution, and the key points of it lie in: 1) use multi-parent crossover to ensure ergodicity; 2) remove identical individuals from the population for maintaining the diversity; 3) select individuals with low probability to evolve using differential evolution operator, as a result of this, the information of the best individual can be used to speed up the evolution. Experimental results on the complex function show that this algorithm is efficient.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2009年第13期3885-3888,3893,共5页
Journal of System Simulation
基金
863计划项目(2007AA01Z290)
国家自然科学基金项目(60773009)
湖北省自然科学基金(2007ABA009)
关键词
选择压力
种群多样性
多父体杂交算法
差分进化算法
混合差分演化算法
selection pressure
population diversity
multi-parent crossover algorithm
differential evolution
hybrid differential evolutionary algorithm