期刊文献+

一种求解函数优化的混合差分演化算法 被引量:4

Hybrid Differential Evolutionary Algorithm for Solving Function Optimization Problems
下载PDF
导出
摘要 为了解决传统遗传算法易陷入局部最优解的问题,在多父体杂交算法和差分进化算法的基础上,提出了混合差分演化算法。该算法的核心在于,采用多父体杂交算子保证算法的遍历性,通过淘汰相同个体来保持群体的多样性,并以较小概率随机选取部分个体进行差分进化操作,从而充分利用最优个体的信息达到了加快收敛速度的目的。对复杂函数的寻优实验验证了混合差分演化算法的有效性。 A hybrid differential evolutionary algorithm was proposed to avoid trapping local optimum. The algorithm is based on multi-parent crossover and differential evolution, and the key points of it lie in: 1) use multi-parent crossover to ensure ergodicity; 2) remove identical individuals from the population for maintaining the diversity; 3) select individuals with low probability to evolve using differential evolution operator, as a result of this, the information of the best individual can be used to speed up the evolution. Experimental results on the complex function show that this algorithm is efficient.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第13期3885-3888,3893,共5页 Journal of System Simulation
基金 863计划项目(2007AA01Z290) 国家自然科学基金项目(60773009) 湖北省自然科学基金(2007ABA009)
关键词 选择压力 种群多样性 多父体杂交算法 差分进化算法 混合差分演化算法 selection pressure population diversity multi-parent crossover algorithm differential evolution hybrid differential evolutionary algorithm
  • 相关文献

参考文献13

  • 1Whitley D. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trial is best [C]//Proc of the 3rd Int'l Confon Genetic Algorithms, San Mateo, CA, USA, 1989. 116-121.
  • 2Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization [C]// Proc 2nd Int Conf Genetic Algorithms and their Applications, Hillsdale, NJ, USA. USA: Lawrence Erlbaum, 1987:41-49.
  • 3江瑞,罗予频,胡东成,司徒国业.一种协调勘探和开采的遗传算法:收敛性及性能分析[J].计算机学报,2001,24(12):1233-1241. 被引量:22
  • 4Li Y X, Zou X F, Kang L S, Zbigniew Michalewicz. A new dynamical evolutionary algorithm from statistical mechanics [J]. Computer Science and Technology (S1000-9000), 2003, 18(3): 361-368.
  • 5Wolpert D H, Macready W G No free lunch theorems for optimization [J]. IEEE Trans on Evolutionary Computation (S1089- 778X), 1997, 1(1): 67-82.
  • 6Bersini H, Renders B. Hybridizing genetic algorithms with hill climbing methods for global optimization: Two possible ways [C]// IEEE Int Symposium Evolutionary Computation, Orlando, USA, 1994. USA: IEEE, 1994: 312-317.
  • 7Salomin R. Evolutionary algorithms and gradient search: similarities and difference [J]. IEEE Trans on Evolutionary Computation (S1089- 778X), 1998, 2(2): 45-55.
  • 8STORN R, PRICE K. Differential Evolution--A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces [R]// Technical Report TR-95-012, ICSI, 1995.
  • 9覃俊,康立山,陈毓屏.演化算法的收敛性分析及算法改进[J].计算机工程与应用,2003,39(19):91-92. 被引量:7
  • 10康立山,刘溥,陈毓屏.函数优化异步并行演化算法[J].计算机研究与发展,2001,38(11):1381-1386. 被引量:13

二级参考文献11

共引文献44

同被引文献32

  • 1刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 2Price K.Differential evolution:A fast and simple numerical optimizer[C]//1996 Biennial Conf of the North American Fuzzy Information Processing Sociey,New York, 1996: 524-527.
  • 3Rainer S, Price K.Differential evolution- A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997,11(4) :341-359.
  • 4Price K V.Differential evolution vs the functions of the second ICEO[C]//IEEE Int Conf on Evolutionary Computation, Indiannupolis, 1997: 153-157.
  • 5Lee C G, Cho D H,Jung H K.Niche genetic algorithm with restricted competition selection for multimodal function optimization[J].IEEE Trans on Magnetics, 1999,35: 1122-1125.
  • 6STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces [ J ]. ,Journal of Global Optimization,1997,11 (4) :341-359.
  • 7LIU Jun-hong, LAMPINEN J. A fuzzy adaptive differential evolution algorithm [ J ]. Soft Computing,2005,9 ( 6 ) :448- 462.
  • 8BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Trans on Evolutionary Computation,2006,10(6) : 646-657.
  • 9BREST J, BOSKOVI B, GREINER S,et al. Performance comparison of self-adaptive and adaptive differential evolution algorithms [ J ]. Soft Computing,2007,11 (7) :617-629.
  • 10QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization [J]. IEEE Trans on Evolutionary Computation, 2009, 13 (2): 398-417.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部