期刊文献+

解特殊工艺约束双目标调度问题的新遗传算法 被引量:2

New Genetic Algorithm for Solving Bi-objective Scheduling Problem Subjected to Special Process Constraint
下载PDF
导出
摘要 针对特殊工艺约束下非一致并行多机双目标调度问题,设计了一个双目标调度模型(BOSP)。进而基于遗传算法和免疫理论的思想,提出了新的遗传算法(IGA)。算法的编码采用了向量组编码方法,能有效地反映实际调度方案;免疫算子的引入,保证了种群的多样性和种群的质量,加快了算法收敛速度。仿真结果表明,算法是有效的,免疫算法的引入,使算法能较好地收敛到最优解,优于没有引入免疫算子的遗传算法,并能适用于解实际的此类调度问题。 In order to solve the problem of non-identical parallel multi-machine scheduling subjected to special process constraint with the objectives of minimizing the maximum completion time (makespan) and minimizing the total tardiness penalty, a hi-objective scheduling model (BOSP) was designed, and then a new genetic algorithm (IGA) based on genetic algorithm and immune theory was proposed in order to effectively solve this model. A vector group encoding method was adopted in IGA to effectively reflect the virtual scheduling policy. Meantime, an immune operator was adopted in order to guarantee diversity of the population and quality of the population. Numerical experiments show that it is efficient, and can be better convergent to the optimal solution, and is superior to genetic algorithm without the immune operator. A much better prospect of application can be optimistically expected.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第14期4235-4237,共3页 Journal of System Simulation
基金 国家973基础研究发展规划资助项目(2005cb321703)
关键词 双目标调度 遗传算法 免疫算子 特殊工艺约束 bi-objective scheduling genetic algorithm immune operator special process constraint
  • 相关文献

参考文献9

  • 1高家全,赵端阳,何桂霞,王雨顺.解特殊工艺约束拖后调度问题的并行遗传算法[J].计算机工程与应用,2007,43(27):184-186. 被引量:9
  • 2Jiaquan Gao, Guixia He. Multi-Objective Scheduling Problems Subjected to Special Process Constraint [C]//The Proceedings of the 2008 IEEE Congress on Evolutionary Computation (S978-1-4244- 1823-7), Hong Kong. USA: IEEE Computer Society, 2008: 341-347.
  • 3C F Liaw, C Y Chen, M Chen. Scheduling Two-Machine No-Wait Open Shops to Minimize Makespan [J]. Computers & Operations Research (S0305-0548), 2005, 32(4): 901-917.
  • 4Valente JMS, J F Goncalvs. A Hybrid Genetic Algorithm for the Early/Tardy ScheduLing Problem [J]. Asia-Pacific Journal of Operational Research (S0217-5959), 2006, 23(3): 393-405.
  • 5高家全,王雨顺.解并行多机提前/拖后调度问题的并行遗传算法[J].计算机工程与应用,2006,42(20):10-12. 被引量:11
  • 6C M Fonseca, P J Fleming. An Overview of Evolutionary Algoritlmas in Multiobjective Optimization [J] Evolutionary Computation (S1063-6560), 1995, 3(1): 1-16.
  • 7E Zitzler. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transaction on Evolutionary Computation (S1089-778X), 1999, 6(2): 257-271.
  • 8A E Eiben, J E Smith. Introduction to Evolutionary Computing [M]. New York, USA: Springer, 2003: 54-57.
  • 9Leandro N de Castro, J Timmis. Artificial Immune System: a New Computational Intelligence Approach [M]. New York, USA: Springer, 2002:64-65.

二级参考文献10

共引文献16

同被引文献27

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部