期刊文献+

递推加权最小二乘算法的研究 被引量:3

Research of Recursive Weighted Least Squares Algorithm
下载PDF
导出
摘要 通常在使用递推加权最小二乘算法时,需要设计矩阵列满秩。从极限理论的角度出发,对设计矩阵列不满秩时加权最小二乘估计的递推算法进行了理论证明和分析,得出了在任意第n步,未知参数估计值收敛于由前n组数据所决定的极小范数加权最小二乘解,并且此解是唯一的,仿真结果同样验证了该结论的正确性。 It is usually required that the design matrix is column full rank in applying recursive weighted least squares algorithm. Applying the limit theory, theoretical proof and analysis for the algorithm were given in the case that the rank of column of design matrix is non-full, and that after the arbitrary n-th step, the estimator of unknown parameter converges to the solution of the minimum norm weighted least squares was obtained In addition, the solution is unique and decided by the preceding n groups of sample. Furthermore, the simulations prove the validity of this conclusion.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第14期4248-4250,共3页 Journal of System Simulation
基金 安徽省省级教学研究项目(2007jyxm400) 淮南师范学院科研基金资助计划项目(2007lkp03zd) 湖南省教育厅科研项目(07C191)
关键词 线性模型 递推加权最小二乘算法 MOORE-PENROSE逆 极小范数加权最小二乘解 linear model recursive weighted least squares algorithm Moore-Penrose inverse minimum norm Weighted least squares solution
  • 相关文献

参考文献7

  • 1S Haykin. Adaptive Filter theory [M]. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
  • 2C K Chui, G Chen. Kalman Filtering with Real-Time Applications [M]. Germany: Spfinger-Verlag, 1987.
  • 3AP塞奇,JL梅尔萨.估计理论及其在通讯与控制中的应用[M].北京:科学出版社,1978.
  • 4姜睿,罗贵明.基于加权最小二乘法的最优适应控制器[J].自动化学报,2006,32(1):140-147. 被引量:11
  • 5Zhou J, Zhu YM, Li XR, You ZS. Variants of the Greville formula with applications to exact recursive least squares [J]. SIAM Journal on Matrix Analysis and Applications (S0895-4798), 2002, 24(1): 150-164.
  • 6秦廷,陈宗海,李衍杰.递推最小二乘算法的补充性证明[J].系统仿真学报,2004,16(10):2159-2160. 被引量:9
  • 7R E Plackett. Some Theorems in Least Squares [J]. Biometrika (S0006-3444), 1950, 37(1-2): 149-157.

二级参考文献13

  • 1罗贵明.基于最小二乘算法的最优适应控制器[J].自动化学报,1996,22(1):79-84. 被引量:4
  • 2[1]Lennart Ljung,Torsten Soderstrom. Theory and practice of recursive identification[M]. Cambridge,MA,USA: The MIT Press, 1983
  • 3[3]Chow Tommy W S, Tan Hong-Zhou, Fei Gou. Third-order cumulant RLS algorithm for nonminimum ARMA systems identification. Signal Processing 1997,61(1): 23-38
  • 4[4]Xiao-Long Zhu, Xian-Da Zhang. Adaptive RLS algorithm for blind source separation using a natural gradient [J]. IEEE Signal Processing Letters, 2002, 9(12): 432-435
  • 5[5]Kwang-Seop, Eom, Dong-Jo, Park. Analysis of overshoot phenomena in initialisation stage of RLS algorithm [J]. Signal Processing, 1995, 44(3): 329-339
  • 6[6]Farhang-Boroujeny. Adaptive Filters: Theory and Applications [M]. Wiley, New York, 1998.
  • 7[10]Tai-Kuo Woo. HRLS. A more efficient RLS algorithm for adaptive FIR filtering [J]. IEEE Communications Letters, 2001, 5(3): 81 -84
  • 8[11]Park D J, Jun B E, Kim J H. Fast tracking RLS algorithm using novel variable forgetting factor with unity zone [J]. Electronics Letters, 1991, 27(23): 2150 -2151
  • 9[12]Qiao S. Fast adaptive RLS algorithms: a generalized inverse approach and analysis [J]. IEEE Transactions on Signal Processing, 1991, 39(6): 1455 -1459
  • 10江敏,吴国威,陈素贤,季怀民.一种递推最小二乘图象参数辨识[J].计算机学报,1990,13(7):539-542. 被引量:1

共引文献18

同被引文献34

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部