期刊文献+

基于神经网络的视频压缩的FPGA实现 被引量:2

Implementation of video compression on FPGA based on neural network
下载PDF
导出
摘要 基于PC的传统的视频压缩实时性较差,给视频的实时压缩和传输带来了困难。针对实时视频压缩传输的难点,提出了在FPGA平台上实现基于神经网络的视频压缩的策略。在建立了基于神经网络的视频压缩系统结构的基础上,给出了神经网络算法的设计,同时完成了非线性的神经元激励函数的线性逼近,并给出了典型FPGA模块的设计,最后通过DSPBuilder和Matlab工具对编写的verilog模块加以验证,给出了实验结果。 To address the difficulty of real-time video transmission and compression, a neural network based video compression strategy implemented on FPGA is proposed. After the building of the neural network based video compression system, the design of the neural network is completed. At the same time, the approximation of the nonlinear neuron activation fimction is completed and the designs of the typical FPGA modules are presented. At last, an experiment is implemented using Matlab and DSP Builder and the result is given out.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第13期3082-3084,3132,共4页 Computer Engineering and Design
关键词 视频 实时压缩 FPGA 神经网络 DSPBUILDER video real-timegompression FPGA neural networks DSPBuilder
  • 相关文献

参考文献7

  • 1刘立程.基于BP人工神经网络的图像压缩技术过程及分析[J].微计算机信息,2007,23(02X):312-314. 被引量:10
  • 2刘金琨.先进PID控制MATALAB仿真[M].北京:电子工业出版社,2006:162-170.
  • 3Acosta Nelson,Tosini Marcelo.Custom architectures for fuzzy and neural networks controllers[J].JCS&T,2002,2(7):9-15.
  • 4刘波.Familiarity to verilog HDL language programme[M].北京:电子工业出版社,2007:273-284.
  • 5Link for DSPBuilder users' guide[EB/OL].Http//:www.ALTERA.com,2007:14-16.
  • 6Xue Dingyu,Chen Yangquan.MATLAB solution to mathematical problems in control[M].Beijing:Tsinghua University Press,2007:356-370.
  • 7罗军辉,冯平.MATLAB7.0在图像处理中的应用[M].北京:机械工业出版社,2006.

二级参考文献3

共引文献15

同被引文献19

  • 1韩建涛,王书宏,张月,陈曾平.一种基于DSP的弱小目标实时检测算法研究[J].光电子技术与信息,2005,18(5):59-63. 被引量:2
  • 2HANDMANN U,KALINKE T.Computer vision for driver assistance systems[J].Proc.SPIE,1998,3364:136-147.
  • 3GREIFFENHAGEN M,RAMESH V.Statistical model-ing and performance characterization of a real-time dual camera surveillance system[J].IEEE Conf,CVPR,2000:335-342.
  • 4LI L,HUANG W,GU I Y H.Statistical modeling of complex backgrounds for foreground object detection[J].IEEE Transactions on Image Processing,2004,13(11):1459-1472.
  • 5MONICA F,XU S S.Performance comparison of EKF and particle ?ltering methods for maneuvering targets[J].Digital Signal Processing,2007,17:774-786.
  • 6HAUG A J.A tutorial on Bayesian estimation and track-ing techniques applicable to nonlinear and non-Gaussian processes[J].Mirte Technique Report,2005:5-40.
  • 7SUNIL S P,RANJITH M,ASAD D.Tracking moving target system theory[J].2006.SSST '06.Proceeding of the Thirty-Eighth Southeastern Symposium on March 2006:80-84.
  • 8HALL D,NADCIMENTO J,RIBERIRO P.Comparison of target detection algorithms using adaptive background models[M].Visual Surbeillance and Performance Eva-luation of Tracking and Surveilance,2005.2nd Joint IEEE International Workshop,2005:113-120.
  • 9许志良,周智恒,曹英烈,彭革新.关于运动目标检测的发展现状研究[J].移动通信,2008,32(12):35-38. 被引量:12
  • 10李晋惠,容慧.一种静态背景下的运动目标检测算法研究[J].西安工业大学学报,2008,28(6):573-576. 被引量:6

引证文献2

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部