期刊文献+

基于克隆进化选择算法的多目标优化研究

MULTI-objective optimization based on clonal evaluation selection algorithm
下载PDF
导出
摘要 把免疫系统的克隆选择学说与生物进化法则应用到多目标优化计算中,引入免疫克隆学说的记忆单元体,使用聚类方法对其中的抗体进行不断的优化更新和劣体淘汰;采用非均匀变异操作促进种群抗体的多样性;通过抗体间亲和度体现种群中个体的竞争,抗体与抗原亲和度来抑制过度的竞争,维持种群广泛性。最后由计算机仿真实验,并与NSGA-Ⅱ算法比较了两者的收敛性和分布性,证明由克隆进化算法得到的结果距离真实Pareto曲线更接近,分布更均匀、范围更广泛。 Both the clonal selection principle and biological evolution theory are applied in the multi-objective optimization. It uses memory eell of immunity clone theory in this algorithm, which uses the cluster method in the memory cell set of the clonal selection algorithm to renew and eliminate antibody. The non-uniform mutation operator is employed to the multiplicity of population. This algorithm promotes to individual competition by antibody-antibody affinity. Populations get universality and restrain excessive competition with antigen-antigen affinity. Final results show that the proposed approach have performances similar or better than those produced by NSGA-Ⅱ. It get a closer Pareto curve which is a set of the uniform and widespread solution.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第13期3151-3153,共3页 Computer Engineering and Design
基金 河南省杰出人才创新基金项目(521000100)
关键词 生物免疫 克隆进化选择 多目标优化 亲和度 记忆单元 biological immune clonal evaluation selection multi-objective optimization affinity memory cell
  • 相关文献

参考文献12

  • 1De Castro L,Timmis J.An artificial immune network for multimodal function optimization[C].Proceedings of the Congress on Evolutionary Computation,2002:699-704.
  • 2Coello Coello C A,Toscano Pulido G,Salazar Lechuga M.Handing multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8:256-279.
  • 3Jiao LC,Du HF,Liu F,et al.Immunological computation for optimization,learning and recogition[M].Beijing:Science Press,2006.
  • 4Agulrre A H,Botello Rionda S,Coello Coello C A,et al.Handling constraints using multi-objective optimization concepts[J].International Journal for Numerical Methods in Engineering,2004,59(15):1989-2017.
  • 5Coello Coello C A,Van Veldhuizen DA,Lamont G B.Evolutionary algorithm for solving multi-objective problems[M].New York:Kluwer Academic Publishers,2002:6762-6764.
  • 6Bosman P A N,Thierens D.The balance between proximity and diversity in multi-objective evolutionary algorithms[J].IEEE Transactinns on Evolutionary Computation,2003(7):174-188.
  • 7Knowles J,Corne D.On metrics for comparing non-dominated sets[C].Congress on Evolutionary Computation.Pisataway,New Jersey:IEEE Service Center,2002:711-716.
  • 8Zheng Jinhua,Charles Ling,Zhongzhi Shi,et al.A multi-objective genetic algorithm based on quick sort[C].Canadian Conference on AI,2004:175-186.
  • 9Tan K C,Y Y J,Goh C K,et al.Enhanced distribution and exploration for multiobjective evolutionary algorithms[C].Congress on Evolutionary Computation,2003:1521-1528.
  • 10Lu H,Yen GG.Rank-density-based multiobjective genetic algorithm and benchmark test function study[J].IEEE Transactions on Evolutionary Computation,2003,7:325-334.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部