期刊文献+

文档图像二值化算法VFCM 被引量:7

VFCM:binarization algorithm for document image
下载PDF
导出
摘要 为了提高基于拍摄方式的文档图像的二值化效果,降低光学字符识别(optical character recognition,OCR)系统的文字识别错误率,提出了一种全局阈值与局部阈值相结合的二值化算法——VFCM。该算法使用最大方差比方法产生全局阈值,使用FCM(FuzzyC-Means)聚类方法产生局部阈值。这两种方法的结合能够较好地保留字符的笔画细节,并能有效地消除伪影。实验结果表明,该算法可以取得比较好的二值化效果,并能带来OCR系统识别率的有效提高。 To improve the binarization effects of camera-based document images, and reduce error rate of the optical character recognition (OCR) system, a binarization algorithm VFCM is proposed based on the combination of the global threshold and the local threshold. The global threshold is computed by maximal variance ratio algorithm and the local threshold is computed by Fuzzy C-Means (FCM) algorithm. The VFCM algorithm can well reserve character strokes.and eliminate ghost artifacts. Experiments show that the proposed algorithm could yield better visual quality and OCR performance.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第13期3216-3218,3243,共4页 Computer Engineering and Design
基金 北京市教委科技发展面上基金项目(KM200710009005) 北方工业大学重点研究基金项目(NCUT20090106) 北方工业大学科研基金项目 北方工业大学科研平台及团队建设基金项目
关键词 二值化 文档图像 阈值 最大方差比 模糊C均值算法 binarization document image threshold maximum variance ratio FCM algorithm
  • 相关文献

参考文献10

  • 1Lu S J,Tan C L.Binarization of badly illuminated document image through shading estimation and compensation[C].Curitiba,Parana,Brazil:proceedings of the 9th International Conference on Document Analysis and Recognition,2007:312-316.
  • 2Gatos B,pratikakis I,Pratikakis S J.Adaptive degraded document image binarization[J].Pattern Recognition,2006,39(3):317-327.
  • 3Sezgin M,Sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-165.
  • 4Kim I J.Multi-Window binarization of camera image for document recognition[C].Tokyo,Japan:preceedings of the 9th International Workshop on Frontiers in Handwriting Recognition,2004:323-327.
  • 5Pan M S,Zhang F,Ling H F.An Image binarizatinn method based on HVS[C].HuNan,China:International Conference on Multimedia & Expo,2007:1283-1286.
  • 6Rhee F C-H.Uncertain fuzzy clustering:in sights and recommendations[J].IEEE Computational Intelligence Magazine,2007,2(1):44-56.
  • 7柴本成.基于最大方差比的图像二值化算法[J].浙江万里学院学报,2005,18(4):44-46. 被引量:4
  • 8Moh'd B A-Z,Amjad H,Bashar A-S.A fast fuzzy clustering algorithm[C].Corfu Island,Greece:Proceedings of the 6th WSEAS International Conference on Artificial Intelligence,Knowledge Engineering and Data Bases,2007:28-32.
  • 9陈新泉.一种基于近似类抽样的组合聚类方法[J].上饶师范学院学报,2008,28(3):71-75. 被引量:1
  • 10Yang Y.OCR oriented binarization method of document image[C].Sanya,China:proceedings of the 1st International Congress on Image and Signal Processing,2008:622-625.

二级参考文献15

  • 1J.Kittle and J. Illingworth Mnimum error thresholding [J] .Pattern Recognization 1989,(10):41 -47
  • 2J.S.Lee and M.C.K. Yang,Thresholding selection using estimates from truncated normal distribution. IEEE Trans[J]. Systems Man and Cybemet, 1989,(19):422-429.
  • 3N.Otsu, A threshold Selection method from gray-level histogram[J]. IEEE Trans systems Man and Cybemet. 1989,(8):62-66.
  • 4T.Pun,Entropic thresholding, a new approach [J]. Comput. Vision Graphics Image Process, 1981 (16):210-239.
  • 5M.I.Sezan, A peak detection algorithm and its application to histogram-based image data reduction [J]. Comput. Vision Graphics Image Process, 1990,(49);36-51.
  • 6d-m. Tsai and Y-h. Cheng, A fast histogram-clustering approach for multi-levelthresholding[J].Pattern Recognition Lett.1992,(13):245-252.
  • 7Vladimir EstivillCastro. Why so many clustering algorithms - A Position Paper. SIGKDD Explorations. 4( 1 ) : 65 - 75.
  • 8Zalfid N., Abouelala O., Limouri M., et al. Fuzzy clustering based on K- nearest- neighbours rule[J]. Fuzzy Sets and Systems, 2001, 120:239 - 247.
  • 9Bezdek J.C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.
  • 10Xinquan Chen, Hong Peng, Jingsong Hu. k- Medoids Substitution Clustering Method and a New Clustering Validity Index Method[A]. Proceedings of the Sixth World Congress on Intelligent Control and Automation[ C]. 2006, 7 : 5896 - 5900.

共引文献3

同被引文献55

引证文献7

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部