期刊文献+

Apriori算法在流程工业质量控制中的应用研究 被引量:3

Application research of Apriori algorithm in process of industrial quality control
下载PDF
导出
摘要 采用Apriori算法对流程工业的过程历史数据进行分析,得到流程工业数据中温度、压力、流量等过程变量对丙烯产品质量的影响程度,实现对未知影响因素的分析和预测。实验结果表明,采用关联规则挖掘能够得到生产过程中隐含的质量调节规律,根据这些信息可以提高过程的控制及操作水平,从而提高决策能力和决策效率,对流程工业的生产管理具有一定的指导意义。 Apriori algorithm to the process of industrial processes historical data analysis, by industrial processes data in temperature, pressure, flow process variables such as the acrylamide level of quality of products and achieve the unknown factors affect the analysis and forecasting. The experiments show that by mining association rules is implied in the production process of regulating the quality, according to this information can improve the control and operation, thereby enhancing the efficiency of decision-making ability and decision-making, the process of industrial production and management have a certain significance.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第13期3228-3230,共3页 Computer Engineering and Design
关键词 数据挖掘 关联规则 APRIORI算法 流程工业 质量控制 data mining association rules Apriori algorithm process industry quality control
  • 相关文献

参考文献9

二级参考文献35

  • 1王艳.数据挖掘中关联规则的探讨[J].成都信息工程学院学报,2004,19(2):172-176. 被引量:18
  • 2杜娟.移动通信业务中的数据关联性分析[J].福建电脑,2004,20(5):14-15. 被引量:1
  • 3张舒博,林齐宁.加强品牌建设 减少客户离网[J].信息网络,2005(1):40-44. 被引量:2
  • 4[1]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In Proceeding of the 20th International Conference on Very Large Databases. 1994, 487-499
  • 5[2]Jong S P, Ming S C, Philip S Y. An effective hash based algorithm for mining association rules[C]. In Proceedings of the 1995 ACM SIGMOD International Conference On Management of Data. 1995, 24(2): 175-186
  • 6[3]Jiawei H, Micheline K. Data mining: concepts and techniques[C]. Morgan, 2001, 149-158
  • 7R.Agrawal,T.Imielinski and A.Swami,Mining association rules between sets of items in large databases.
  • 8Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD conference on management of data, 1993, 207-216.
  • 9Han J, Pei J, Yin Y. Mining frequent pattems without candidate generation [C]. Proc 2000 ACM-SIGMOD Int Conf Management of Data(SIGMOD' 00), Dalas, TX, 2000.
  • 10Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases[C]. Proceedings of the 21st International Conference on Very large Database,1995.

共引文献184

同被引文献18

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部