摘要
全自动体育运动识别,通过提取视频光流特性和梯度特征,达到聚类的目的。从每一帧的特征中,通过线性系统辨识工具,学习每个视频片段的运动形状。尽管非钢体的运动序列难于进行学习、比较,但是动态描述方程具有很强的比对能力和鉴别能力。使用它们来识别单个运动或者行为得到较好的效果。
Our goal is to extract the motion signatures of moving human figures to recognize sports activities. We begin with a short sequence of images of a moving figure and then analyze the dynamic structure of these sequences using a system identification approach. The learned dynamics and transition matrices show significant statistical variation across various activities. Therefore, a distance is derived from subspace learning as measurements to recognize individual events and activities by the angels of their motion subspace in spatial-temporal domain.
出处
《武汉理工大学学报》
CAS
CSCD
北大核心
2009年第14期142-144,152,共4页
Journal of Wuhan University of Technology
关键词
系统辨识
运动矢量
梯度
体育视频分类
system identification
optical flow
gradient
sports video classification