期刊文献+

氮化铝薄膜的原子层淀积制备及应用 被引量:1

Preparing aluminum nitride thin film by atomic layer deposition
原文传递
导出
摘要 以三甲基铝(TMA)和氨气(NH3)为源,在原子层淀积设备上实现了氮化铝薄膜的制备.通过扫描电子显微镜、X射线能谱仪和原子力显微镜对氮化铝薄膜的生长速率、成分和粗糙度进行了分析,优化了薄膜淀积工艺.以每周期单分子层的生长模式进行氮化铝薄膜淀积,淀积速率为每周期0.205 nm,厚度为61 nm的薄膜粗糙度为0.69 nm.利用原子层淀积氮化铝薄膜的保型性,通过nm级薄膜厚度的控制,制备了复杂的环形光子晶体器件,其工艺精度高达50 nm. Using a sequential injection of trimethylaluminum (TMA) and ammonia (NH3), aluminum nitride (A1N) thin films were prepared on silicon wafers by atomic layer deposition (ALD). The deposition condition was optimized by characterizing the growth rate, atomic percentage and roughness of the thin films with scan electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM) and a unique monomolecular growth mechanism was achieved with growth rate of 0. 205 nm/cycle and roughness of 0.69 nm in 61 nm thick films. Finally, by using the conforreal property of the ALD AlN thin films, nanoscale annular photonic crystals (APC) were fabricated which avoids the challenging electron-beam lithography (EBL) alignment to achieve a process accuracy of 50 nm.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第7期35-37,41,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重点基础研究发展计划预研项目(2006CB708310) 国家自然科学基金资助项目(60578048)
关键词 氮化铝 原子层淀积 保型性 粗糙度 环形光子晶体器件 aluminum nitride atomic layer deposition conformal roughness annular photonic crystals
  • 相关文献

参考文献10

  • 1Kawashima T, Yoshikawa H, Adachi S, et al. Optical properties of hexagonal GaN[J]. Journal of Applied Physics, 1997, 82 (7): 3 528-3 535.
  • 2Hwang B H, Chen C S, Lu H Y, et al. Growth mechanism of reactively sputtered aluminum nitride thin films[J]. Materials Science & Engineering: A,2002, 325 (1-2): 380-388.
  • 3Dubois M A, Muralt P. Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering[J]. Journal of Applied Physics, 2001, 89 : 6 389-6 395.
  • 4Suntola T. Atomic layer epitaxy [J]. Thin Solid Films, 1992, 216: 84-86.
  • 5Suntola T. Surface chemistry of materials deposition at atomic layer level [J]. Applied Surface Science, 1996, 100-101:391-398.
  • 6King J S, Graugnard E, Summers C J. Atomic layer deposition in porous structures: 3D photonic crystals [J]. Applied Surface Science, 2005, 244: 511-516.
  • 7Kurt H, Citrin D S. Annular photonic crystals[J]. Optics Express, 2005, 13:10 316-10 326.
  • 8Kurt H, Hao R, Chen Y, et al. Design of annular photonic crystal slabs[J]. Optics Letters, 2008, 33 (14):1 614-1 616.
  • 9Saynatjoki A, Mulot M, Ahopelto J, et al. Dispersion engineering of photonic crystal waveguides with ring-shaped holes [J].Optics Express, 2007, 15: 8 323-8 328.
  • 10Hoffmann P, Utke I, Perentes A, et al. Comparison of fabrication methods of sub-100 nm nano-optical structures and devices [C] // Proceedings of SPIE. San Diego: SPIE, 2005, 5 925: 1-15.

同被引文献41

  • 1刘雄英,黄光周,范艺,于继荣.原子层沉积技术及应用发展概况[J].真空科学与技术学报,2006,26(z1):146-153. 被引量:12
  • 2吴宜勇,李邦盛,王春青.单原子层沉积原理及其应用[J].电子工业专用设备,2005,34(6):6-10. 被引量:13
  • 3N.H.Karam,张秀霞.550℃下器件质量级GaN的原子层外延生长[J].半导体情报,1996,33(5):37-39. 被引量:1
  • 4Clayton A J,Irvin S J C. The kinetics of parasitic growth in GaAs MOVPE[J]. J Cryst Growth, 2007,300: 277.
  • 5Kim H. Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semicon- ductor device processing[J]. J Vacuum Sci Techn B, 2003,21 (6) :2231.
  • 6Puurunen R L. Surface chemistry of atomic layer deposi- tion: A case study of the trimethylaluminum/water process[J]. Appl Phys Rev, 2005,97(12) : 121301.
  • 7Tischler M A, Bedair S M. Self-limiting mechanism in the atomic layer epitaxy of GaAs[J]. Appl Phys Lett, 1986,48 (24) : 1681.
  • 8Dip Anthony, Eldallal Gamel M, Colter Peter C, et al. Atomic layer epitaxy of GaAs with a 2μm/h growth rate[J]. Appl Phys Lett, 1993,62(19) : 2378.
  • 9Colter P C, Hussien S A,Dip A, et al. Atomic layer epitaxy of device quality GaAs with a 0. 6μm/h growth rate[J]. Appl Phys Lett, 1991,59(12) : 1440.
  • 10Reid K G,Urdianyk H M,Bedair S M. Role of trimethylga- Ilium exposure time in carbon doping and high temperature atomic layer epitaxy of GaAs[J]. Appl Phys Lett, 1991,59 (19) :2397.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部