期刊文献+

超微型涡轮中极低展弦比静叶栅流场特性的数值研究 被引量:3

Flow Field Characteristics of Stator Cascade with Extremely Low Aspect Ratio in an Ultra-micro Gas Turbine
下载PDF
导出
摘要 通过数值求解柱坐标系下三维定常粘性雷诺时均N-S方程,结合RNGk-ε湍流模型和非平衡壁面函数,获得了超微涡轮中极低展弦比静叶栅流道内部的三维稳态粘性流场,揭示了其独特的流场物理特性和气动损失规律.结果表明:超低展弦比涡轮叶栅中存在双二次流现象;尽管超微燃气涡轮静叶栅高度仅为1.3 mm,壁面影响区占叶高的总高度仍不超过3%;叶片的静压载荷主要由中部弧段承担;总压损失主要发生在近壁区,尤其是吸力面近壁区;静叶栅径向各截面最大马赫数并不是出现在主流中央,而是介于主流中央和壁面之间的一个狭小区域,这可能与通道低能二次流与主流的掺混作用有关. The three-dimensional steady viscous flow field of an stator cascade with extremely low aspect ratio in ultra-micro gas turbine was obtained by numerically solving the 3D Navier-Stokes equations with time averaged Reynolds stress model under cylindrical system, combined with RNG k-ε turbulent model and non equilibrium wall function. The unique physical features of flow field and the regulations of aerodynamic loss were revealed. Results show that, the phenomenon of double secondary flow exisits in extremely low aspect ratio stator. Though the height of the stator cascade in the ultra-micro gas turbine is only 1.3 mm, the wall influenced area is relatively small, less than 3% height of the stator cascade. The main static pressure load is undertaken by middle part of the profile. The total pressure loss mainly takes place in the near wall area, especially the one adjacent to suction side. The maximum Mach number on each section along spanwise appears in a narrow area between the central flow region and wall surface, not in the centre of main flow which is supposed to be. It is probably due to the mixing of low energy secondary flow with main flow.
出处 《动力工程》 CAS CSCD 北大核心 2009年第7期656-663,共8页 Power Engineering
基金 国家自然科学基金国际合作资助项目(50721140651) 国家自然科学基金杰出青年基金资助项目(50825603)
关键词 超微型涡轮 极低展弦比 静叶栅 流场特性 数值模拟 ultra-micro gas turbine extremely low aspect ratio stator cascade flow field characteristics numerical simulation
  • 相关文献

参考文献14

  • 1EPSTEIN A H,SENTURIA S D.Macro power from micro machinery[J].Science,1997,276(5316):1211.
  • 2MEHRA A,ZHAN0 X,AYON A A,etal.A six-wafer combustion system for a silicon micro gas turbine engine[J].Journal of Microelectromechanical Systems,2000.9(4):517-527.
  • 3ISOMURA K,MURAYAMA M,TERAMOTO S,et al.Experime-ntal verification of the feasibility of a 100 W class micro-scale gas turbine at impeller diameter 10 ram[C]// Nobuhide Kasahi.Prec.5 th Int.Workshop oB Micro and Nanoteclmology fer Power Generation and Energy Conversion Applications.Tokyo,Japan:The University of Tokyo'2005:25-28.
  • 4YUASA S,OSHIMI K,NOSE H.et al.Concept and combustion characteristics of ultra-micro combustors with premixed flame[J].Proceedings of the Combustion Institute,2005,30(2):2455-2462.
  • 5SPADACCINI C M,ZHANG X,CADOU C P,et al.Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J].Sensors mad Actuators A,2003,103(1/2):219-224.
  • 6KAYAL T K,CHAKRAVARTY M.Combustion of liquid fuel inside inert porous media:an analytical approach[J].Int.J.Heat Mass Transfer,2005,48(2):331-339.
  • 7CHOUNDHURI A R,GOLLAHALLI S R.Characteristics of hydrogen-hydrocarbon composite fuel turbulent jet flame[J].Int.J.hydrogen energy,2003; 28(4):445-454.
  • 8CAO H L,XU J L.Thermal performance of a micro-combustor for micro-gas turbine system[J].Energy Conversion and Management,2007,48(5):1569-1578.
  • 9TSAI B J,WANG Y L.A novel swiss-roll recuperator for the microturbine engine[J].Applied Thermal Engineering,2009.29(2/3):216-223.
  • 10PIEKOS E S,ORR D J,JACOBSON S A,et al.Design and analysis of microfabricated high speed gas journal bearings[C]//Proceeding of 28th AIAA Fluid Dynamics Conference.Snowmass Village,C0,USA:American Intitute of Aeronantics and Astronautics,1997.

二级参考文献15

共引文献30

同被引文献26

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部