期刊文献+

统计流形上的等仿射结构(英文) 被引量:1

Equiaffine structures on statistical manifolds
原文传递
导出
摘要 作者首先研究了等仿射几何与贝叶斯统计学之间的关系,这里贝叶斯统计学的先验分布被看作统计流形上的体积形式,然后利用统计流形上α平行先验估计和体积形式的关系,结合子流形上的基本方程和基本公式给出了一个统计子流形上具有等仿射结构的条件. In this paper, information geometric theories are generalized, relations between equiaffine geometry and Bayesian statistics are studied, where a prior distribution in Bayesian statistics is regarded as a volume form on a statistical manifold. Then by applying the relation between α-parallel priors and the volume forms on statistical manifolds, the sufficient conditions for a statistical submanifolds to have an equiaffine structure are given.
作者 金迎迎 贾方
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期881-885,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 流计流形 等仿射结构 活动标架 子流形 statistical manifold, equiaffine structure, moving coordinate, submanifold
  • 相关文献

参考文献7

  • 1Jeffierys H.Theory of probability[M].USA:California Press,1961.
  • 2Takeuchi J,Amari S.α-prior and its properties[J].IEEE Trans Inform Theory,2005,51:1011.
  • 3Nomizu K,Sasaki T.Affine diffierential geometry of affine immersions[M].Cambridge:Cambridge University Press,1994.
  • 4Matsuzoe H,Takeuchi J,Amari S.Equiaffine structures on statistical manifolds and Bayesian statistics[J].Diff Geom Appl,2006,536:1.
  • 5Lauritzen S.L.Statistical manifolds[C]∥Diffierential Geometry in Statistical Inferences.New York:Cambridge University Press,1994.
  • 6Amari S,Nagaoka H.Method of information geometry[M].Oxfold:Oxfold University Press,2000.
  • 7Li A M,Simon U,Zhao G S.Global affine diffierential geometry of hypersurfaces[M].New York:Walter de Gruyter,1993.

同被引文献14

  • 1Zhang J.A note on curvature of α-connectoins of a statistical manifold[J].Ann Inst Stat Math,2007,59:161-170.
  • 2Amari S,Nabaoka H.Methods of Information Geomtry[M].Oxford:Oxford University Press,2000.
  • 3Matsuzoe H,Takeuchi J,Amari S.Equiaffine structures on statistical manifolds and Bayesian statisticals[J].Differential Geometry and Its Applications,2006,24(6):567-578.
  • 4Nomizu K,Sasaki T.Affine Differential Geometry-Geometry of Affine Immersions[M].Cambridge:Cambridge University Press,1994.
  • 5Uohashi K,Ohara A,Fujii T.1-conformally flat statistical submanifolds[J].Osaka J Math,2000,37:501-507.
  • 6Izumi H.Conformal-projective flat statistical structures on tangent bundle over statistical manifolds[J].Differential Geometry and Its Applications,2007,28:239-251.
  • 7Matsuzoe H,Gddotuand I,Inoguchi J.Statistical structures on Tangent bundles[J].Apphed Science,2003,5(1):55-75.
  • 8Nassar H A,Abd-Ellsh N H,Moustafa H M.Information geometry and statistical manifold[J].Chaos,Solitons and Fractals,2003,15:161-172.
  • 9Zhong Feng-wei,Sun Hun-fei,Zhang Zhen-ning.An information geometry algorithm for distribution control[J].Bull Brazil Math Soc,2008,39(1):1-10.
  • 10Matsuzoe H.Computational Geometry from the Viewpoint of Aflfine Geometry[M].Berlin,Heidelberg:Springer-Verlag,2009:103-123.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部