期刊文献+

破轮图所决定构形为二次构形的证明 被引量:2

A proof that broken-wheel graphic arrangements are quadratic
下载PDF
导出
摘要 讨论了由破轮图所决定的图构形在哪些序下为二次构形。通过编写计算机程序得出有限个顶点的图构形为二次构形时序的情况,再找出这些序所反映的规律,最后再对这些规律进行逻辑论证并推广至顶点个数为n的情况。证明了由破轮图所决定的图构形为二次构形的一个充要条件。 The orders for which the graphic arrangements determined by broken-wheel graphs are quadratic have been analyzed. With the aid of a computer, the orders for which the graphic arrangements with finite points are quadratic were found. Between these orders, there is regularity that can be extended to a graphic arrangement with n points. A sufficient and necessary condition for the broken-wheel graphic arrangements to be quadratic has been obtained.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期116-120,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(10671009)
关键词 破轮图 图构形 二次构形 broken-wheel graph graphic arrangement quadratic arrangement
  • 相关文献

参考文献5

  • 1Orlik P,Terao H.Arrangements of hyperplanes[M].Berlin:Springer-Verlag,1992.
  • 2Stanley R P.An introduction to hyperplane arrangements[M].Washington:IAS/Park City Mathematics Series,2004.
  • 3Yuzvinsky S.Orlik-solomon algebras in algebra and topology[J].Russian MathSurveys,2001,56(2):293-364.
  • 4Pearson K J.Cohomology of the orlik-solomon algebras[D].Oregon:the University of Oregon,2000.
  • 5章江华,姜广峰.OrlikSolomon代数的NBC基的一个算法[J].北京化工大学学报(自然科学版),2005,32(1):85-89. 被引量:4

二级参考文献6

  • 1Orlik P, Terao H. Arrangements of Hyperplanes [ M].Berlin. Springer-Verlag, 1992, 67- 69.
  • 2Yuzvinsky S. Orlik-Solomon algebras in algebra and topology[J]. Russian Math Surveys, 2001,56(2) :293 -364.
  • 3Pearson K J. Cohomology of the Orlik-Solomon algebras[D]. Oregon: the University of Oregon, 2000.
  • 4Libgober A, Yuzvinsky S. Cohomology of the Orlik-Solomon algrbras and local systems [J ]. Compositio Math, 2000, 12( 1 ) : 337 - 361.
  • 5RichabdJ.离散数学(第五版)[M].北京:人民邮电出版社,2003.179-181.
  • 6Jiang G, Yu J M. Supersolvability of complementary signed-graphic hyperplane arrangements[J ]. Australasian Journal of Combinatorics, 2004, 30(9) :261 - 276.

共引文献3

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部