摘要
Supercavitating flow around a slender symmetric wedge moving at variable velocity in static fluid has been studied. Singular integral equation for the flow has been founded through distributing the sources and sinks on the symmetrical axis. The supereavity length at each moment is determined by solving the singular integral equation with finite difference method. The supercavity shape at each moment is obtained by solving the partial differential equation with variable coefficient. For the case that the wedge takes the impulse and uniformly variable motion, numerical results of time history of the supercavity length and shape are presented. The calculated results indicate that the shape and the length of the supercavity vary in a similar way to the case that the wedge takes variable motion, and there is a time lag in unsteady supercavitating flow induced by the variation of wedge velocity.
Supercavitating flow around a slender symmetric wedge moving at variable velocity in static fluid has been studied. Singular integral equation for the flow has been founded through distributing the sources and sinks on the symmetrical axis. The supercavity length at each moment is determined by solving the singular integral equation with finite difference method. The supercavity shape at each moment is obtained by solving the partial differential equation with variable coefficient. For the case that the wedge takes the impulse and uniformly variable motion,numerical results of time history of the supercavity length and shape are presented. The calculated results indicate that the shape and the length of the supercavity vary in a similar way to the case that the wedge takes variable motion,and there is a time lag in unsteady supercavitating flow induced by the variation of wedge velocity.
基金
Sponsored by the National Natural Science Foundation of China(Grant No.10832007)