期刊文献+

环形加权网络的时空混沌延迟同步 被引量:8

Lag synchronization of spatiotemporal chaos in a weighted network with ring connection
原文传递
导出
摘要 研究了环形加权网络的时空混沌延迟同步问题.以随时间和空间演化均呈现混沌行为的时空混沌系统作为网络的节点,通过环形加权连接使所有节点建立关联.基于线性稳定性定理,通过确定网络的最大Lyapunov指数,得到了实现网络延迟同步的条件.在最大Lyapunov指数小于零的区域内,任取节点之间耦合强度的权重值,均可以使整个网络实现延迟同步.采用具有时空混沌行为的自催化反应扩散系统作为网络节点,仿真模拟验证了该方法的有效性. Lag synchronization of spatiotemporal chaos in a weighted network with ring connection is studied in this paper. Spatiotemporal chaos systems are taken as the nodes of the network, and connections between the nodes are made through a weighted ring. According to stability theory, the condition to realize lag synchronization of the network is obtained by identifying the maximum Lyapunov exponent of the network. Lag synchronization exists in the whole network when the largest Lyapunov exponent is less than zero, and the coupling strength between the nodes can be given any weight value. Autocatalytic reactiondiffusion chaotic systems are taken as the nodes of the network, and simulation results show the effectiveness of the method.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第7期4463-4468,共6页 Acta Physica Sinica
基金 辽宁省自然科学基金(批准号:20082147) 辽宁省教育厅创新团队计划(批准号:2008T108)资助的课题~~
关键词 延迟同步 加权网络 时空混沌 LYAPUNOV指数 lag synchronization, weighted network, spatiotemporal chaos, Lyapunov exponent
  • 相关文献

参考文献17

  • 1Strogatz S H 2001 Nature 410 268
  • 2Newman M E J,Strogatz S H,Watts D J 2001 Phys.Rev.E 64 26118
  • 3Stelling J,Klamt S,Bettenbrock K,chuster S,Gilles E D 2002 Nature 420 190
  • 4Ravasz E,Barabasi A L 2003 Phys.Rev.E 67 26112
  • 5Huberman B A,Adamic L A 1999 Nature 401 131
  • 6Vazquez A,Pastor-Satorras R,Vespignani A 2002 Phys.Rev.E 65 66130
  • 7Adamic L A,Huberman B A 2000 Science 287 2115
  • 8Barabasi A L,Albert R 1999 Science 286 509
  • 9Jiang P Q,Wang B H,Bu S L,Xia Q H,Luo X S 2004 J.Modern Phys.B 18 2674
  • 10Li C,Chen G R 2004 Physica A 343 236

二级参考文献10

共引文献16

同被引文献29

  • 1高自友,吴建军,毛保华,黄海军.交通运输网络复杂性及其相关问题的研究[J].交通运输系统工程与信息,2005,5(2):79-84. 被引量:94
  • 2Pecoral L M, Carrol T L. Synchronization of chaotic systems[J]. Phys. Rev. Lett,1990,64(8):821-830.
  • 3Carrol T L, Pecoral L M. Synchronizing chaotic circuits[J]. IEEE Trans. Circuits Systems, 1991,38(4) : 453-456.
  • 4Jae Hun Kim, Chang Woo Park. Fuzzy adaptive synchroniza- tion of uncertain chaotic systems[J]. Physics Letters A, 2005, 334:295-305.
  • 5Ju H Park. Synchronization of Genesio chaotic system via backstepping approach [J]. Chaos, Solitons and Fractals, 2006, 27 : 1369-1375.
  • 6Fa qiang Wang, Chong xin Liu. Synchronization of unified cha- otic system based on passive control [J]. Physica D, 2007, 225: 55-60.
  • 7Heng hui Chen. Global synchronization of chaotic systems via linear balanced feedback control[J]. Applied Mathematics and Computation, 2007, 186: 923-931.
  • 8Wen wu Yu, Jin de Cao. Synchronization control of stochastic delayed neural networks [J]. Physica A, 2007, 373: 252-260.
  • 9Yu X, Song Y. Chaos synchronization via controlling partial state of chaotic systems[J]. Chaos, 2001, 11 (6): 1737-1741.
  • 10Meng J, Wang X Y. Robustanti-synchronization of a class ofdelayed chaotic neural networks [J]. Chaos, 2007, 17 (2) : 023113-023117.

引证文献8

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部