期刊文献+

二维不可压流体Kelvin-Helmholtz不稳定性的弱非线性研究 被引量:4

Study on the Kelvin-Helmholtz instability in two-dimensional incompressible fluid
原文传递
导出
摘要 通过将扰动速度势展至三阶,提出了Kelvin-Helmholtz(KH)不稳定性的弱非线性理论.在模耦合过程中观察到一个重要的共振现象,共振使得模耦合过程变得相当复杂,单模扰动很快进入非线性区,产生大量高次谐波,共振加强了非线性作用.分析了单模扰动中二次和三次谐波产生效应,以及对基模指数增长的非线性校正.模拟结果支持了解析理论.利用该理论,分析了KH不稳定的非线性阈值问题. A weakly nonlinear model is proposed for the Kelvin-Helmholtz instability by expanding the perturbation velocity potential to third order. It is found that there is an important resonance in the process of mode coupling. This resonance makes the coupling processes very complex and interesting. Single-mode perturbation enters nonlinear stage quickly and produces lots of harmonics. The resonance reinforces the action of nonlinear process. The second and third harmonic generation efficiency of a single-mode disturbance is computed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. Our simulations support the weakly nonlinear results from our analytic model. The nonlinear threshold phenomenon is also analyzed.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第7期4787-4792,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(973)项目(批准号:2007CB815100) 高等学校博士学科点专项科研基金(批准号:20070290008) 国家自然科学基金(批准号:10775020和10874242)资助的课题~~
关键词 KELVIN-HELMHOLTZ不稳定性 弱非线性理论 非线性阈值 Kelvin-Helmholtz instability, weakly nonlinear theory, nonlinear threshold
  • 相关文献

参考文献18

  • 1Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability(Oxford:Clarendon) p481
  • 2Hasegawa1 H,Fujimoto M,Phan T D et al 2004 Nature 430 755
  • 3Lobanov A P,Zensus J A 2001Science 294 128
  • 4Gamexo V N,Khokhlo A M,Oran E S et al 2003 Science 299 77
  • 5Young Y N,Calder A C,Fryxell B 2006Phys.Rev.E 74 66308
  • 6Fan Z F,Luo J S,Ye W H 2007Chin.Phys.Lett.24 2308
  • 7Fan Z F,Luo J S 2008 Chin.Phys.Lett.25 624
  • 8Walker J S 1993Phys.Fluids A 5(1) 1466
  • 9Bau H H 1982 Phys.Fluids 25(10) 1719
  • 10Horton W,Perez J C,Carter T,Bengtson R 2005 Phys.Plasmas 12 22303

二级参考文献18

  • 1叶文华,计算物理,1998年,2期
  • 2Kilkenny J D, Glendinning S G, Haan S W, et al. A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion[J]. Phys Plasmas, 1994, 1:1379-1389.
  • 3Hsing W W, Hoffman N M. Measurement of feedthrough and instability growth in radiation-driven cylindrical implosions[J]. Phys Rev Lett, 1997, 78:3876-3879.
  • 4Weir S T, Chandler E A, Goodwin B T. Rayleigh-Taylor instability experiments examining feedthrough growth in an incompressible convergent geometry[J]. Phys Rev Lett, 1998, 80:3763-3766.
  • 5Tubbs D L, Barnes C W, Beck J B, et al. Cylindrical implosion experiments using laser direct drive[J]. Phys Plasmas, 1999, 6:2095-2104.
  • 6Book D L, Boris J P, Hain K. Flux-corrected transport II: generalizations of the method[J]. J Comput Phys, 1975, 18:248-283.
  • 7Beck J B. The effects of convergent geometry on the ablative Rayleigh-Taylor instability in cylindrical implosions[D]. Purdue University, 1996. 65-66.
  • 8Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London : Oxford University) p481.
  • 9Yabe T,Hoshino H,Tsuchiya T 1991 Phys. Rev. A 44 2756
  • 10Rikanati A 2003 Phys. Fluids 15 3776

共引文献31

同被引文献14

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部