期刊文献+

掺氮碳化硅纳米管电子结构的第一性原理研究 被引量:8

First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes
原文传递
导出
摘要 采用基于密度泛函理论的第一性原理计算,对本征碳化硅纳米管和掺氮碳化硅纳米管的电子结构进行了计算.计算表明本征(8,0)碳化硅为直接带隙半导体,能带间隙为0.94 eV;掺氮浓度为1.56%和3.12%的碳化硅纳米管的能带间隙减小为0.83 eV和0.74 eV.从差分电荷密度可以看出,能带间隙的减小是氮硅键与碳硅键相比共价成键能力降低的结果. The electronic structures of the intrinsic and nitrogen-doped silicon carbide nanotubes (SiCNTs) have been calculated by first-principles approach based on the density functional theory. The intrinsic (8, 0) SiCNT is a direct band-gap semiconductor with a gap value of 0.94 eV. The band-gap of the SiCNT with the doping concentration of nitrogen being 1.56% and 3.12% is narrowed to 0.83 eV and 0.74 eV, respectively. The narrowing of the band-gap is the result of the weakening of the Si-N bonds compared with the corresponding Si-C bonds, which can be seen by comparing the charge density difference of the intrinsic SiCNT with that of the nitrogen-doped nanotube.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第7期4883-4887,共5页 Acta Physica Sinica
基金 国家部委预研项目(批准号:51308030201)资助的课题~~
关键词 碳化硅纳米管 掺氮 第一性原理 电子结构 silicon carbide nanotubes, nitrogen-doped, first-principles, electronic structures
  • 相关文献

参考文献3

二级参考文献56

共引文献48

同被引文献65

  • 1ZHANG WeiHu1,2,3,ZHANG FuChun3,ZHANG ZhiYong4,LU ShuYuan5 & YANG YanNing3 1 Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710068,China,2 Graduate University of Chinese Academy of Sciences,Beijing 100049,China,3 College of Physics and Electronic Information,Yan’an University,Yan’an 716000,China,4 Information Science and Technology Institution,Northwest University,Xi’an 710127,China,5 Department of Telecommunications,Xi’an Institute of Posts and Telecommunications,Xi’an 710121,China.Electronic structure and magnetism of Fe-doped SiC nanotubes[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1582-1589. 被引量:3
  • 2周俊哲,王崇愚.掺硅对封闭碳纳米管尖端几何及电子结构影响的第一原理研究[J].科学通报,2005,50(24):2706-2712. 被引量:9
  • 3徐彭寿,谢长坤,潘海斌,徐法强.3C-SiC的能带结构和光学函数的第一性原理计算[J].中国科学技术大学学报,2006,36(9):1001-1004. 被引量:4
  • 4Iijima S. Helical microtubules of graphitic carbon[J]. Na- ture, 1991, 354:56-58.
  • 5MorkocH, Strit S, Gao G B, et al. Large-band-gap SiC, III- V nitride, and II-VI ZnSe-based semiconductor device tech- nologies[J]. Appl Phys, 1994, 76:1363-1398.
  • 6Rao C N R, Deepak F L, Gautam Gundiah, et al. Inorganic nanowires[J]. Prog Solid State Ch, 2003, 31:5-147.
  • 7Wang N, Cai Y, Zhang R Q. Growth of nanowires[J]. Ma- ter Sci Eng R, 2008, 60:1 51.
  • 8Yang G Z, Cui H, Sun Y, et al. Simple catalyst-free method to the synthesis of 13-SIC nanowires and their field emission properties[J]. J Phys Chem C, 2009, 113:15969-15973.
  • 9孟阿兰,任维鹏,李镇江,等.SiC纳米线的纯化及场发射性能研究[J].功能材料.2010:356-358.
  • 10Zhang X N, Chen Y Q, Xie Z P, et al. Shape and doping en- hanced field emission properties of quasialigned 3C-SiC nanowires[J]. J PhysChemC, 2010, 114~8251-8255.

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部