期刊文献+

改进的最小二乘支持向量机在入侵检测系统中的应用 被引量:1

Application of Improved Least Squares Support Vector Machine in Intrusion Detection System
下载PDF
导出
摘要 介绍最小二乘支持向量机的基本原理论,提出基于最小二乘支持向量机的网络入侵检测系统模型。由于计算经验风险的损失函数为二次函数形式,LSSVM丧失了标准支持向量机的稀疏性,为使LSSVM具有稀疏性,从统计分析的角度出发,应用主成分分析的方法,对样本集进行特征提取,消除变量间的相关性,选取训练样本中分类作用最大的若干样本个体作为支持向量,并将非支持向量上的分类信息转移至支持向量上,提出新的LSSVM稀疏化算法——基于主成分分析的最小二乘支持向量机算法。实验结果表明,由此构建的稀疏LSSVM分类器保持了支持向量机的良好分类性能,而稀疏率相对高,其支持向量数甚至少与标准支持向量机,明显提高了LSSVM的分类效率和实时性。 Introduces the relative theory of the LSSVM, puts forward a network intrusion detection model based on the LSSVM. Since the empirical risk is calculated via quadratic function, LSSVM loses sparseness of SVM. To spare LSSVM, the principal component analysis method is used to extract feature, clear up the irrelevance and select import examples of training sample as support vector (SV), and the information of non SV examples was transformed to SV, so new sparse algorithm was proposed, PCA-LSSVM. The result shows that the sparse LSSVM classifier keeps the classify ability of the SVM, and the sparse rate is higher, the SV count is less than standard support vector, enhance the classify efficiency and the real-time of the LSSVM obviously.
出处 《现代计算机》 2009年第6期39-42,共4页 Modern Computer
关键词 入侵检测 最小二乘支持向量机(LSSVM) 主成分分析 稀疏性 Intrusion Detection LSSVM (Least Squares Support Vector Machine) Principal Component Analysis Sparse
  • 相关文献

参考文献6

  • 1Suykens J.A.K,Vandewalle,J.Least Squares Support Vector Machine Classifier,Neural Processing Letters,9:293-300,1999.
  • 2Suykens J.A.K,Van Gestel T,De Brabanter J,De Moor B,Vandewalle J.Least Squares Support Vector Machines,Singapore:World Scientific Publishing Co.,Pte,Ltd,2002.
  • 3N Vapnik著.张学工译.统计学习理论的本质[M].北京:清华大学出版社2000.
  • 4Cao L J.Chua K S,Chong W K,etal.A Comparison of PCA,KPCA,and ICA for Dimensionality Reduction in Support Vector Machine[J].Neurocomputing,2003,55(1-2):321-336.
  • 5Jollihe I.J.Principal Component Analysis[M].New York:Springer,1986.
  • 6边肇祺 张学工,模式识别,第二版.清华大学出版社,2001:234-304.

同被引文献37

引证文献1

二级引证文献205

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部