期刊文献+

基于Laplace-Impact混合模型的DR图像去噪算法 被引量:3

DR Image Denoising Based on Laplace-Impact Mixture Model
下载PDF
导出
摘要 提出一种双树复小波域中基于Laplace-Impact混合模型的DR图像去噪算法。该法利用局部方差建立的拉普拉斯-冲击模型的概率密度函数来逼近高频子带的系数分布。由于高频子带系数局部高度相关,所以在Laplace-Impact混合模型的框架下,采用最小均方误差估计可以很好消除DR图像噪声。实验结果表明,本文提出的算法与BLS-GSM模型和Laplace模型等经典去噪算法相比,对DR图像中的高斯噪声有更好的去噪效果。 A novel DR image denoising algorithm based on Laplace-Impact mixture model in dual-tree complex wavelet domain is proposed in this paper. It uses local variance to build probability density function of Laplace-Impact model fitted to the distribution of high-frequency subband coefficients well. Within Laplace-Impact framework, this paper describes a novel method for image denoising based on designing minimum mean squared error(MMSE) estimators, which relies on strong correlation between amplitudes of nearby coefficients. The experimental results show that the algorithm proposed in this paper outperforms several state-of-art denoising methods such as Bayes least squared Gaussian scale mixture and Laplace prior.
出处 《中国医疗器械杂志》 CAS 2009年第4期247-250,共4页 Chinese Journal of Medical Instrumentation
关键词 DR图像去噪 双树复小波变换 Laplace—Impact混合模型 最小均方误差估计 DR image denoising, dual-tree complex wavelet, Laplace-Impact mixture model, MMSE estimator
  • 相关文献

参考文献8

  • 1张大鹏,王义,李元景,程建平,李金.数字X射线图像综合校正方法研究[J].核电子学与探测技术,2008,28(1):46-51. 被引量:2
  • 2Ashish Khare,Uma Shanker.A new method for deblurring and denoising of medical images using complex wavelet transform[C].Conference Proceeding of 1EEE Engineering in Medicine and Biology Society,2006,1897-1900.
  • 3Ricardo J.Ferrari,Robin Winsor.Digital radiographic image denoising via wavelet-based hidden Markov model estimation[J].Journal of Digital Imaging,2005,18(2):154-167.
  • 4Mark Miller,Nick Kingsbury.Image denoising using derotated complex wavelet coefficients[J].IEEE Transactions on Image Processing,2008,17(9):1500-1511.
  • 5Hossein Rabbani,Mansur Vafadust.Image denoising in complex wavelet domain using a mixture of bivariate Laplacian distributions with local parameters[J].Proceedings of SPIE,2007,Vol.6575,pp.65750P
  • 6I W Selesnick,R G Baraniuk,and N G Kingsbury.The dual-tree complex wavelet transform-a coherent framework for multiseale signal and image processing[J].IEEE Signal Processing Magazine,2005,22(6):123-151.
  • 7MK Mihcak,1 Kozintsev,K Ramchandran,et al.Lowcomplexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6(12):300-303.
  • 8David L.Donoho.Denoising by soft-threshold[J].IEEE Transactions on Information Theory,1995,41(3):613-627,

二级参考文献4

共引文献1

同被引文献22

  • 1李彦,沈旭昆.基于高斯模型的遥感影像目标识别方法的初探[J].系统仿真学报,2009,21(S1):57-60. 被引量:2
  • 2梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 3侯建华,田金文.基于贝叶斯最大后验估计的局部自适应小波去噪[J].计算机工程,2006,32(11):13-15. 被引量:13
  • 4Candes EJ, Do DL. Curvelets: A surprisingly effective non- adaptive representation for objects with edges [ C ]. Curve and Surface Fitting. Nashvil-le, TN, USA: Vanderbilt University Press, 1999.
  • 5Do MN, Vetterli M. Contourlets: A directional multiresolution image representation[ C]. Proc of IEEE International Conference on Image Processing. Rochester,NY :2002 : 357-360.
  • 6Coifman RR, Donoho DL. Translation invariant denoising [ C ]. Wavelets and Statistics, Springer Lecture Notes in Statistics 103. New York :Springer Verlag, 1995 : 125-150.
  • 7Fletcher AK,Ramchandran K, Goyal VK. Wave-let denoising by recursive cycle spinning [ C ]. Proc IEEE International Conference Image Processing. Rochester,NY :2002 : 873-876.
  • 8Fletcher AK, Ramchandran K, Goyal VK. Iterative projective wavelet methods for denoising[ J]. Proc Wavelets:Appl in Sig &Image Proc X, part of SPIE Int Symp on Optical Sci & Tech, 2003,5207 ( 1 ) :9-15.
  • 9Eslami R, Radha H. The contourlet transform for image de- noising using cycle spinning [ C ]. Asilo-mar Conference on Signals, Systems, and Compu-ters. Pacific Grove, USA: 2003. 1982-1986.
  • 10Javier P, Vasily S, Martin W R, et,al. Image denoising using scale mixtures of Gaussians in the wavelet domain [ J ]. Transaction on Image Processing, 2003,12(11): 1338- 1351.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部