期刊文献+

基于应力分布的月球车轮地相互作用地面力学模型 被引量:39

Terramechanics Model for Wheel-terrain Interaction of Lunar Rover Based on Stress Distribution
下载PDF
导出
摘要 轮地相互作用地面力学在月球车的设计、性能评价、控制和仿真等方面具有重要作用,是目前基于动力学进行月球车相关研究的瓶颈。基于此,利用针对月球车开发的车轮—土壤相互作用测试系统进行试验,结合试验数据对传统车辆轮地相互作用正应力和切应力分布模型进行修正,并分析月球车轮刺高度对应力分布的影响,从而提出随滑转率变化改变沉陷指数的经验公式,以反映土壤侧向流动等引起的滑转沉陷。对应力分布公式积分得到集中力/力矩计算模型,并结合试验数据进行验证。在载荷为80N,滑转率从0.05增加到0.6时,模型对于车轮垂直载荷、挂钩牵引力和驱动力矩的计算值与试验数据相比,相对误差不超过10%。模型能够反映滑转沉陷和轮刺效应,可以有效地用于月球车轮地相互作用力学的计算。 Terramechanics for wheel-terrain interaction of lunar exploring rover, which is the bottleneck of dynamics-based research at present, can play an important role in mechanical design, performance evaluation, control, simulation, etc. Experiments are done by using the wheel-terrain interaction testing system developed for lunar rover. The conventional normal and shear stress distribution models are improved according to the experimental data. And the effect caused by the wheel lugs is also analyzed. To retie ct the slip-sinkage caused by lateral flow of deformable soil, the concept that the sinkage exponent should vary according to the slip ratio is proposed and an empirical formula is given. Mathematic model for calculating concentrated force/torque is deduce d by integrating the distributed stresses, which is verified by experimental data. With a load of 80 N, while the slip ratio increases from 0.05 to 0.6, the relative error of calculated value and experimental data for normal load, drawbar pull and driving torque is less than 10%. The model can reflect slip-sinkage and the effect of wheel lugs, and can be used effectively for the calculation of wheel-terrain interaction mechanics.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第7期49-55,共7页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划(863计划 2006AA04Z231) 黑龙江省自然科学基金重点项目(ZJG0709) 哈尔滨工业大学优秀青年教师培养计划(CACZ98504837) 教育部高等学校学科创新引智计划(B07018)资助项目
关键词 地面力学 月球车 轮地相互作用 滑转率轮刺 Terramechanics Lunar rover Wheel-terrain interaction Slip ratio Wheel lug
  • 相关文献

参考文献11

  • 1SHIGAMI G,MIWA A,NAGATANI K,et al.Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil[J].Journal of Field Robotics,2007,24 (3):233-250.
  • 2BEICKER G.Introduction to terrain-vehicle systems[M].Michigan:University of Michigan Press,Ann Arbor,1969.
  • 3APOSTOLOPOULOS D S.Analytical configuration of wheeled robotic locomotion[R].Pennsylvania:The Robotics Institute of Carnegie Mellon University,2001.
  • 4高海波,张鹏,邓宗全,胡明,陶建国.新型八轮月球车悬架的研制[J].机械工程学报,2008,44(7):85-92. 被引量:16
  • 5PATEL N,ELLERY A,ALLOUIS E,et al.Rover mobility performance evaluation tool (RMPET):A systematic tool for rover chassis evaluation via application of Bekker theory[C]//Proceeding of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation,November 2-4,2004,ESTEC,Noordwijk,Netherlands.Noordwijk:European Space Agency,2004:251-258.
  • 6李雯,高峰,孙鹏.复合材料深空探测车车轮的设计[J].吉林大学学报(工学版),2006,36(4):502-505. 被引量:5
  • 7WONG J Y,REECE A R.Prediction of rigid wheel performance based on analysis of soil-wheel stresses,part Ⅰ:performance of driven rigid wheels[J].Journal of Terramechanics,1967,4 (1):81-98.
  • 8SHIBLY H,IAGNEMMA K,DUBOWSKY S.An equivalent soil mechanics formulation for rigid wheels in deformable terrain,with application to planetary exploration rovers[J].Journal of Terramechanics,2005,42:1-13.
  • 9JANOSI Z,HANAMOTO B.Analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils[C]// Proceedings of the 1st International Conference of ISTVS,June 12-16,Torino-SaintVincent,Italy.Torino:International Society for Terrain-Vehicle Systems,1961:707-726.
  • 10ISHIGAMI G,NAGATANI K,YOSHIDA K.Path planning for planetary exploration rovers and its evaluation based on wheel slip dynamics[C]// IEEE International Conference on Robotics and Automation,April 10-14,2007,Roma,Italy.Piscataway:IEEE Robotics and Society,2007:2 361-2 366.

二级参考文献13

  • 1郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19. 被引量:104
  • 2高海波,邓宗全,胡明,王少纯.行星轮式月球车移动系统的关键技术[J].机械工程学报,2005,41(12):156-161. 被引量:28
  • 3Berkeman Peter,Chen Mei.Design of a day/night lunar rover[D].Pittsburghers:The Robotics Institute,Carnegie Mellon University,1995.
  • 4Miller D P,Hunt T.Experiments with a long-range planetary rover[C] // Proceeding of the 7th International Symposium on Artificial Intelligence,Robtics,and Automation in Space,Nara,Japan,2003.
  • 5Patel Nildeep,Scott Gregory P.Application of Bekker Theory for planetary exploration through wheeled,tracked and legged vehicle locomotion[C] // Space 2004 Conference and Exhibit,USA,2004:28-30.
  • 6Shibly H,Iagnemma K,Dubowsky S.An equivalent soil mechanics formulation for rigid wheels in deformable terrain,with application to planetary exploration rovers[J].Journal of Terramechanics,2005,42:1-13.
  • 7Winterholler Alois.Development,design and verification of different wheel concepts for NASA's field integrated design and operations rover[D].zur Erlangung des Grades,Diplom-Ingenieur (FH),2002.
  • 8Automation Creations,Inc.MatWeb material property data[EB/OL].[2005-05-12].http://www.matweb.com.
  • 9MATIVEJIC J, SHIRLEY D. The mission and operation of the mars pathfinder mieromver[J]. Control Eng., 1997, 5(6): 827-835.
  • 10HIROSE S. Design of lunar and mars rovers in Tokyo Institute of Technology[J]. Design Engineering, 1998, 12(33): 449- 454.

共引文献19

同被引文献444

引证文献39

二级引证文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部