期刊文献+

微观组织对高强铝合金接头冲击韧度的影响 被引量:11

Effect of Microstructure on Impact Toughness of High Strength Aluminum Alloy Welds
下载PDF
导出
摘要 以2519-T87高强铝合金为研究对象,研究其接头的冲击断裂性能及微观组织。研究表明,晶界上分布的α+θ(CuAl2)共晶相是焊缝中心和熔合线附近区域韧性较差的主要原因,并且由于熔合线附近等轴晶区中的共晶相数量高于焊缝中心区域,导致其成为接头韧性最差的区域。晶界液化以及显微裂纹的产生是部分熔化区脆化的主要原因。析出物的溶解使完全回归区获得接头最大冲击吸收功22J,而析出物的粗化导致过时效区韧性降低,冲击吸收功仅仅只有7J。断口观察发现除了部分熔化区的断口是脆性断口,接头其他区域断口均为韧窝型断口,且完全回归区中的韧窝最深,韧窝内部的析出物最少。 The 2519-T87 high strength aluminum alloy is welded to study the impact properties and microstructure of the joints. Results indicate that the lower impact toughness of weld centre zone and fusion line zone is caused by the network distribution of α+θ(CuAl2) eutectic phase along the grain boundary. And the higher amount of eutectic phase i s in the equiaxed zone along fusion line, which makes it have the poorest impact toughness. The local melting and microfissure are the main cause for the embrittlement of partially melted zone. The value of the impact absorbed energy in the full-reverted region reaches the maximum 22 J because of the dissolution of precipitates, whereas that value in overaged zone is only 7 J because of coarsening of precipitates. Fractography shows that the fracture of partially melted zone is brittle intergranular fracture, and those of other zones are dimple fractures. The dimples in the fracture of the fully reverted zone are the deepest, and there are least particles in them.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第7期108-113,共6页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划资助项目(863计划 2002AA305402)
关键词 高强铝合金 冲击韧性 热影响区 微观组织 High strength aluminum alloy Impact toughness Heat affected zone Microstructure
  • 相关文献

参考文献13

  • 1KRAMER L S,BLAIR T P,BLOUGH S D,et al.Stress-corrosion cracking susceptibility of various product forms of aluminum alloy 2519[J].Journal of Materials Engineering and Performance,2002,11(6):645-650.
  • 2CARTER H B,DAVID H E,ASHOK S,et al.Transient crack growth behavior in aluminum alloys C415-T8 and 2519-T87[J].Engineering Fracture Mechanics,1999,62(1):1-22.
  • 3FISHER J,JAMES J.Aluminum alloy 2519 in military vehicles[J].Advanced Material and Processes,2002,160(9):43-46.
  • 4国旭明,杨成刚,钱百年,徐强,张洪延.孕育剂Ti,Zr对2219 Al-Cu合金焊缝组织及性能的影响[J].金属学报,2005,41(4):397-401. 被引量:14
  • 5DEVINCENT S M,DEVLETIAN J H,GEDEON S A.Weld properties of the newly developed 2519-T87 aluminum armor alloy[J].Welding Journal,1988,67(7):33-43.
  • 6RADING G O,BERRY J T.A model for heat-affected zone hardness profiles in Al-Li-X alloys[J].Welding Jonrnal,1998,77(10):383-387.
  • 7GUTIERREZ A,LIPPOLD J C,WU L.Nondendritic equiaxed zone formation in aluminum-lithium welds[J].Material Science Forum,1996,217-222(3):1 691-1 696.
  • 8GUTIERREZ A,LIPPOLD J C.A proposed mechanism for equiaxed grain formation along the fusion boundary in aluminum-copper-lithium alloy[J].Welding Journal,1998,77(3):123-132.
  • 9HUNG C,KOU S.Partially melted zone in aluminum welds-liquation mechanism and directional solidification[J].Welding Journal,2000,79(5):113-120.
  • 10KUO M,FOURNELIE R A.Diffusion induced grain boundary migration (DIGM) and liquid film migration in an Al-2.07wt%Cu alloy[J].Acta.Metall.Mater.,1991,39(11):2 835-2 845.

二级参考文献12

  • 1国旭明,杨成刚,钱百年,常云龙,张洪延.高强Al-Cu合金脉冲MIG焊工艺[J].焊接学报,2004,25(4):5-9. 被引量:28
  • 2中国焊接学会编.焊接手册(第二卷)[M].北京:机械工业出版社,2001.520.
  • 3Janaki Ram G D, Mitra T K, Olson D L. Mater Sci Eng,2000; 276A: 48.
  • 4Murty B S, Kori S A, Chakraborty M. Int Mater Rev,2002; 47(1): 3.
  • 5Ganaha T, Pearce B P, Kerr H W. Metall Trans, 1980;11A: 1351.
  • 6Mousavi M G, Cross C E, Grong O. Sci Technol Weld Join, 1999; 4(6): 381.
  • 7Yunjia H, Frost R H, Olson D L, Edwards G R. Weld J,1989; 68(7): 280s.
  • 8Norman A F, Hyde K, Costello F, Thompson S, Birley S,Prangnell P B. Mater Sci Eng, 2003; A354:188.
  • 9Yunjia H, Dalu G, Zhixiong S. Conference on Proceedings of the Aluminum-Lithium III. 1986; 1215.
  • 10Reddy G M, Gokhale A A, Prasad K S, Prasad Rao K.Sci Technol Weld Join, 1998; 3(4): 208.

共引文献13

同被引文献87

引证文献11

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部