期刊文献+

基于形函数控制的组织工程骨架孔隙结构实体建模方法 被引量:3

Computer Modeling Approach for a Porous Scaffold Structure in Tissue Engineering Based on the Shape Function Control
下载PDF
导出
摘要 组织工程支架在组织工程研究中起着重要作用,它不仅为特定的细胞提供结构支撑作用,而且能引导组织再生和控制组织结构。从几何建模的角度,寻找一种通用的组织工程骨架实体建模方法:采用有限元中六面体单元对实体模型进行网格剖分;利用有限元中的八结点六面体形函数将参数域中的基本孔隙单元映射为空间域中各种不规则孔隙几何单元。利用布尔并运算构建实体的造孔单元。再与整个实体轮廓模型(CT/MRI)进行逻辑差运算,就可以得到组织工程骨架模型。研究表明:通过有限元单元剖分方法,有效地解决了组织工程骨架孔隙体元的分布计算等技术问题,相对随机几何方法,具有很好的技术操作性和高效性。通过剖分单元约束和孔隙体元变形构型方法的应用,可大大提高骨组织孔隙形状的自然性。 The porous scaffold plays an important part in the tissue engineering. It not only provides structure support for cells, but also guides the regeneration of tissues and controls the tissue structures. From the viewpoint of geometric modeling, a universal method for porous scaffold modeling is presented: Firstly, the solid model is subdivided based on the technique of all-hexahedral mesh generation; secondly, the basic pore element in the parametric domain is mapped based on the shape ftmction of eight-node isoparametric hexahedron and anomalous pore element model can be obtained in space domain; then the whole pore model can be constructed based on the Boolean operation union; at last the bone scaffold can be modeled by subtracting the whole pore model from the solid model. The results show that the distribution for various irregular pores can be achieved by using the method proposed. Moreover, the method is more operable and effective compared to the stochastic geometry. Because irregular pores are controlled by various irregular hexahedral elements and mapped based on shape function, various irregular pores which simulate those in the natural bone are created in the bone scaffold.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第7期297-304,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(50575139) 高等学校学科创新引智计划(B06012)资助项目
关键词 形函数 组织工程 骨骼支架 孔隙 六面体 Shape function Tissue engineering Scaffold Pore Hexahedral element
  • 相关文献

参考文献18

  • 1NAUGHTON G K,TOLBERT W R,GRILLOT T M.Emerging developments in tissue engineering and cell technology[J].Tissue Engineering,1995,1(2):211-219.
  • 2DIETMAR W H.Scaffolds in tissue engineering bone and cartilage[J],Biomaterials,2000,21:2 529-2 543.
  • 3WOODFIELD T B F,MALDA J,WIJIN J D,et al.Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique[J].Biomaterials,2004,25:4 149-4 161.
  • 4LANDERS R,HUBNER U,SCHMELZEISEN R,et al.Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering[J].Biomaterials,2002,23:4 437-4 447.
  • 5ZEINA I,HUTMACHER D W,TAN K C,et al.Fused deposition modeling of novel scaffold architectures for tissue engineering applications[J].Biomaterials,2002,23:1169-1185.
  • 6CHUA C K,LEONG K F.Development of a tissue engineering scaffold structure library for rapid prototyping,part 1:investigation and classification[J].International Journal of Advanced Manufacturing Technology,2003,21:291-301.
  • 7CHUA C K,LEONG K F.Development of a tissue engineering scaffold structure library for rapid prototyping.Part 2:Parametric library and assembly program[J].International Journal of Advanced Manufacturing Technology,2003,21:302-312.
  • 8LAL P,SUN W.Computer modeling approach for microsphere-packed bone scaffold[J].Computer-Aided Design,2004,36:487-497.
  • 9SCHROEDER C,REGLI William W C,SUN W,et al.Computer-aided design of porous artifacts[J].Computer-Aided Design,2005,37:339-353.
  • 10刘丰,张人佶,陈立峰,颜永年.组织工程支架三维结构点单元数据建模[J].机械工程学报,2006,42(10):37-42. 被引量:6

二级参考文献46

  • 1刘宏建,陈勇,杜靖远,梁惠民,刘昌胜,汪岚.复合rhBMP-2的注射型磷酸钙人工骨在椎体成形术中的应用及生物力学评价[J].中华物理医学与康复杂志,2004,26(7):392-395. 被引量:8
  • 2齐治昌.数值分析及其应用[M].北京:国防科学技术大学出版社,1987.
  • 3Taboas J M, Maddox R D, Krebsbach P H, et al. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials, 2003, 24: 181~194.
  • 4Kalita S J, Bose S, Hosick H L, et al. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science and Engineering C, 2003 23:611~620.
  • 5Ang T H, Sultana F S A, Hutmacher D W, et al. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science and Engineering C,2002, 20:35~42.
  • 6Wilson C E, Bruijn J D D, Blitterswijk C A V, et al. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J. Biomed. Mater. Res.,2004, 68A: 123~132.
  • 7Lam C X F, Mo X M, Teoh S H, et al. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 2002, 20: 49~56.
  • 8Cooke M N, Fisher J P, Dean D, et al. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrow. J. Biomed. Mater. Res. Part. B: Appl.Biomater., 2002, 64B: 65~69.
  • 9Hutmacher D W. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21 : 2 529~2 543.
  • 10Hollister S J, Maddox R D, Taboas J M. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials, 2002, 23: 4 095 ~4 103.

共引文献40

同被引文献22

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部