期刊文献+

Al_2O_3-水纳米流体在微圆管内的流动特性 被引量:1

Flow behavior of Al_2O_3-water nanofluids in micro circular tubes
下载PDF
导出
摘要 测定了不同体积分数下A l2O3-水纳米流体在内径0.193 mm和0.508 mm 2种玻璃微圆管内的流动阻力特性。结果表明:纳米流体流动从层流向湍流转变的临界雷诺数Rec发生在2 100附近;对0.508 mm微圆管,纳米流体由层流向湍流的转变与去离子水基本一致,对0.193 mm微圆管纳米流体流型转变较去离子水略有提前。在雷诺数小于1 500—1 700的层流范围,纳米流体和水的摩擦因子都与经典理论预测值吻合良好,同Hagen-Poiseu ille公式偏差小于7.5%,雷诺数大于此范围后前者的摩擦因子比后者和理论值有所偏高;而在过渡区和湍流范围,纳米流体的摩擦因子比水有较大提高,且随体积分数增加摩擦因子增加的趋势更为明显。 The flow behavior of Al2O3-water nanofluids in micro glass circular tubes with internal diameters of 0. 193 mm and 0. 508 mm was measured at different volume fraction. The results show that the critical Reynolds numbers Re of nanofluids in micro tubes at which the transition from laminar flow to turbulent flow occurred are both around 2100. For the 0.508 mm tube, the transition from laminar to turbulent is consistent with that of deionized water; for the 0. 193 mm tube, the transition of nanofluid flow behavior is little earlier than that of deionized water. In most of the laminar flow range where Re 〈 1 500-1 700, the friction factors of both nanofluids and deionized water agree well with the typical predicted value, with the deviation from the Hagen-Poiseuille predictions less than 7.5%. For Re higher than the aforesaid range, the friction factors of the nanofluids are somewhat higher than that of deionized water and the Hagen-Poiseuille predictions. In the region of transition and turbulent flow, the friction factors of nanofluids increase greatly compared with that of water. As the particle volume fraction increases, the difference becomes more obvious.
出处 《化学工程》 CAS CSCD 北大核心 2009年第7期21-24,共4页 Chemical Engineering(China)
基金 教育部新世纪优秀人才支持计划(NCET-06-0406) 上海市教委科研创新项目(08ZZ10)
关键词 纳米流体 微圆管 流动阻力 临界雷诺数 nanofluid micro tube flow friction critical Reynolds number
  • 相关文献

参考文献8

  • 1CHOI S U S.Enhancing thermal conductivity of fluids with nanoparticles[C]//ASME FED 231.New York:ASME,1995:99-103.
  • 2XUAN Yiming,LI Qiang.Investigation on convective heat transfer and flow features of nanofluids[J].J Heat Trans,2003,125(1):151-155.
  • 3HERIS S Z,ESFAHANY M N,ETEMAD S G.Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube[J].Int J Heat Fluid Flow,2007,28 (2):203-210.
  • 4戴闻亭,李俊明,陈骁,王补宣.细圆管内纳米颗粒悬浮液流动特性的实验研究[J].上海理工大学学报,2003,25(2):121-124. 被引量:4
  • 5DREW D A,PASSMAN S L.Theory of multi component fluids[M].Berlin:Springer,1999.
  • 6CHEIN Reiyu,HUANG Guanming.Analysis of microchannel heat sink performance using nanofluids[J].Applied Thermal Engineering,2005,25(17/18):3104-3114.
  • 7孔珑.工程流体力学[M].2版.北京:中国电力出版社,1992:118.
  • 8STEINKE M E,KANDIKAR S G.Single-phase liquid friction factors in microchannels[J].Int J Therra Sci,2006,45(11):1073-1083.

二级参考文献5

  • 1Eastman J A, Choi U S, Li S, et al. Enhanced thermal conductivity through the development of nanofluids[A]. Materials Research Society Symposium Proceedings V[C], 1996.
  • 2Eastman J A, Choi U S, Li S, et al. Novel thermal properties of nanostructured materials[A]. Materials Science Forum[C]. Switzerland: Trans Tech Publications, 1999.
  • 3Lee S, Choi S U, Li S, ct ai. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. ASME Journal of Heat Transfer, 1999, 121(2):280-289.
  • 4Lee Shinpyo, Choi Stephen U S. Application of metallic nanoparticle suspensions in advanced cooling systems[A]. ASME, Pressure Vessels and Piping Division (Publication) PVP v 342 1996, 227-234.
  • 5Li Jun-Ming, Li Ze-liang, Wang Bu-Xuan. Experimental viscosity measurements for copper oxide nanoparticle suspensions[J]. Tsinghua Science and Technology, 2002, 7(2): 198~201.

共引文献3

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部