摘要
本文主要证明:(1)如果X=Πσ∈ΣXσ是遗传|Σ|-超仿紧空间,则X是遗传超仿紧空间当且仅当F∈Σ,Πσ∈FXσ是遗传超仿紧空间.(2)设X=Πσ∈ΣXσ是遗传可数超仿紧空间,则下列三条等价:X是遗传超仿紧空间;F∈[ω]<ω,Πi∈FXi是遗传超仿紧空间;n∈ω,Πi≤nXi是遗传超仿紧空间.
This paper obtains the following conclusions: (1) let X =∏σ∈∑Xσ be hereditarily |∑|-ultraparacompact space, then X is hereditarily ultraparacompact space if ∏σ∈FXσ is hereditarily ultraparacompact space for every F∈∑^〈w; (2) Let X=∏σ∈∑Xσ be hereditarily coun-table ultraparacompact, then the followings are equivalent: S is hereditarily ultraparacompact space; А↓F∈[ω]^〈ω,∏i∈FXi is hereditarily ultraparacompact space; ∏isnXiis hereditarily ultrapar-acompact space for each n ∈ ω.
出处
《西南民族大学学报(自然科学版)》
CAS
2009年第4期708-710,共3页
Journal of Southwest Minzu University(Natural Science Edition)
基金
国家自然科学基金资助(项目批准号:10671134)
关键词
|Σ|-超仿紧
遗传|Σ|-超仿紧
遗传超仿紧
遗传可数超仿紧
|∑| - ultraparacornpact
hereditarily |∑|- ultraparacompact
hereditarily ultraparacompact
hereditarily countable ultraparacompact