摘要
讨论了再生型、模态耦合型和滞后型3种主要切削颤振类别的特征表达参数。使用多层感知器型的前馈神经网络,研究了切削颤振类别的综合诊断方法。通过切削试验获取神经网络的训练和测试样本,使用误差逆向传播算法对神经网络进行训练。训练和测试过的神经网络可对切削颤振的类别作出正确的诊断。
オhe characteristic representation parameters are presented which describe three dominant categories of cutting chatter including the regenerative, modecoupling and lagging types. The feedforward neural network of multilayer perceptron architecture is used. Comprehensive diagnosis method of cutting chatter categories is investigated with the neural network. Training and testing samples of neural network are collected through cutting experiments. Neural network is trained with the error backpropagation learning algorithm. The developed neural network can correctly categorize chatter created in cutting system. The cutting experiments verified the effectiveness of proposed diagnosis method. The machine tool used is CA6140 lathe.
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
1998年第2期156-160,共5页
Transactions of the Chinese Society for Agricultural Machinery
基金
吉林省科技发展基金
国家自然科学基金
关键词
切削加工
颤振
诊断
模式识别
神经网络
Cutting, Chatter, Diagnosis, Pattern recognition, Neural network