期刊文献+

泛函网络在线增量式学习算法及应用

Online Incremental Learning Algorithm and Application to Functional Networks
下载PDF
导出
摘要 给出了一类泛函网络的数学模型,并分析了它的拓扑结构特点和离线学习过程。在此基础上根据分块矩阵计算方法和泛函网络基函数矩阵本身的特点,给出了泛函网络的两种在线增量式学习算法。该算法能充分利用历史训练结果,具有学习、修正和应变功能。最后,以H(?)non时间序列为例进行仿真。仿真结果表明这两种学习算法是可行和有效的。 A mathematical model of functional networks is proposed. The property of its topology structure and learning process is analyzed. Online incremental learning algorithms based on the block matrix and the property of functions matrix are designed. The learning algorithms make fully use of the training history, and have functions of learning, modification and emergency adaptation. Simulation on a Henon time series shows effectiveness of the proposed algorithms.
出处 《应用科学学报》 CAS CSCD 北大核心 2009年第4期409-413,共5页 Journal of Applied Sciences
基金 国家自然科学基金(No.60461001) 广西省自然科学基金(No.0832082,No.0991086) 国家民委科研项目基金(No.08GX01)资助
关键词 基函数簇 泛函参数 LAGRANGE乘数法 在线增量式学习 Henon时间序列 basis functions functional parameter Lagrange multiplier method online incremental learning Henon time series
  • 相关文献

参考文献7

  • 1CASTILLO E.Functional networks[J].Neural Processing Letters,1998,7:151-159.
  • 2CASTILLO E,COBO A,GUTIèRREZ J M,PRUNEDA R V.Functional networks with apphcations[M].[S.l.]:Kluwer Academic Publishers,1999.
  • 3IGLESIAS A,ARCAY B,COTOS J M,TABOADA J A,DAFONTE C.A comparison between functional networks and artificial neural networks for the prediction of fishing catches[J].Neural Compute & Applies,2004,13:24-31.
  • 4ZHOU Yongquan,JIAO Licheng.Approximate factorization learning algorithm of multivariate polynomials based on functional networks[J].Journal of Information and Computational Science,2005,2(1):205-210.
  • 5ZHOU Yongquan,JIAO Licheng.One-variable interpolation function based on functional networks[J].International Journal of Information Technology,2006,12(2):120-129.
  • 6周永权,焦李成.层次泛函网络整体学习算法[J].计算机学报,2005,28(8):1277-1286. 被引量:17
  • 7FARMER J D,SIDOROWICH J J.Predicting chaotic time series[J].Physics Review Letters,1987,59(8):845-848.

二级参考文献15

  • 1Castillo E.. Functional networks. Neural Processing Letters, 1998, 7: 151~159.
  • 2Castillo E., Gutierrez J.M.. Nonlinear time series modeling and prediction using functional networks. Extracting Information Masked by Chaos. Physics Letter A, 1998, 244: 71~84.
  • 3Castillo E., Cobo A., Gutièrrez J.M.. Working with differential, functional and difference equations using functional networks. Applied Mathematical Modeling, 1999, 23: 89~107.
  • 4Enrique Castillo, Angel Cobo, Josè Manual Gutièrrez, Rosa Eva Pruneda. Functional Networks with Applications. Kluwer Academic Publishers, 1999.
  • 5Karras D.A., Perantonis S.G.. An efficient constrained training algorithm for feedforward networks. IEEE Transactions on Neural Networks, 1995, 6: 1420~1434.
  • 6Patra J.C., Pal R.N., Chatterji B.N., Panda G.. Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics(Part B): Cybernetics, 1999, 29(2): 255~262.
  • 7Ivakheneko A.G.. Polynomial theory of complex system. IEEE Transactions on Systems, Man, and Cybernetics, 1971, 1(4): 364~378.
  • 8焦李成著.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 9李洪兴.数学神经网络(Ⅱ)──神经网络的学习算法[J].北京师范大学学报(自然科学版),1997,33(1):35-42. 被引量:18
  • 10周永权.基于代数神经网络的多元多项式近似因式分解模型及学习算法[J].计算机研究与发展,1999,36(6):668-674. 被引量:14

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部