期刊文献+

含各向异性尺度形变数据集匹配问题的Lie群方法 被引量:7

Lie Group Method for Data Set Registration Problem with Anisotropic Scale Deformation
下载PDF
导出
摘要 通过分析含各向异性尺度形变的数据集匹配问题,将尺度约束引入模型,再结合迭代最近点(Iterative closest point,ICP)方法的一般过程,将含各向异性尺度形变的数据集匹配问题描述为Lie群约束优化问题.通过Lie群的局部参数化和局部线性化方法,将带尺度上下界约束的Lie群约束优化问题转化为一系列的二次规划问题,最终形成了一个完整的匹配迭代算.该方法不仅具有传统ICP方法的快速准确的特点,而且还能够处理存在大尺度形变的数据集匹配问题.由于对尺度参数进行约束,因此比传统方法有更好的鲁棒性.最后,为确保匹配的全局性,给出了一套初始变换的选择方案. By analyzing the data set registration problem with anisotropic scale deformation, we introduced the con- straints to the model. Combining with the procedure of traditional iterative closest point (ICP) method, the registration problem was described as a constrained optimization problem. Using parameterized method by Lie group and quadric approximation to the objective function, the registration problem was translated into a series of quadratic programming problems. Then, a novel scale-registration algorithm was proposed. The numerical simulations showed that such method not only was rapid and accurate as the traditional ICP method, but also could deal with the registration problem with large scale deformation. By introducing the constraints to the scale parameters, the algorithm was more robust. A way for choosing the initial transformations was proposed to assume the global registration.
出处 《自动化学报》 EI CSCD 北大核心 2009年第7期867-874,共8页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2007CB311002)资助~~
关键词 数据集匹配 各向异性尺度形变 LIE群 二次规划 Data set registration, anisotropic scale deformation, Lie group, quadratic programming
  • 相关文献

参考文献13

  • 1Besl P J,McKay N D.A method for registration of 3-D shapes.IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256
  • 2Chen Y,Medioni G.Object modeling by registration of multiple range image.In:Proceedings of the IEEE Conference on Robotics and Automation.Sacramento,USA:IEEE,1991.2724-2729
  • 3Zhang Z Y.Iterative point matching for registration of freefrom curves and surfaces.International Journal of Computer Vision,1994,13(2):119-152
  • 4Fitzgibbon A W.Robust registration of 2D and 3D point sets.Image and Vision Computing,2003,21(13-14):1145-1153
  • 5Jost T,Hugli H.A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images.In:Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling.Washington D.C.,USA:IEEE,2003.427-433
  • 6Lee B U,Kim C M,Park R H.An orientation reliability matrix for the iterative closest point algorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1205-1208
  • 7Sharp G C,Lee S W,Wehe D K.ICP registration using invariant features.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):90-102
  • 8Silva L,Bellon O R P,Boyer K L.Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):762-776
  • 9Granger S,Pennec X.Multi-scale EM-ICP:a fast and robust approach for surface registration.In:Proceedings of the 7th European Conference on Computer Vision.Copenhagen,Denmark:Springer,2002.69-73
  • 10Zha H B,Ikuta M,Hasegawa T.Registration of range images with different scanning resolutions.In:Proceedings of the IEEE International Conference on Systems,Man,and Cybernetics.Nashville,USA:IEEE,2000.1495-1500

同被引文献93

  • 1Gold S, Rangarian A. A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388.
  • 2Zavlanos M M, Pappas G J. A dynamical systems approach to weighted graph matching. In: Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, USA: IEEE, 2006. 3492-3497.
  • 3Rangarajan A, Chui H, Mjolsness E. A relationship between spline-based deformable models and weighted graphs in nonrigid matching. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2001. 897-910.
  • 4Loiola E M, de Abreu N M, Boaventura-Netto P O, Hahn P, Querido T. A survey for the quadratic assignment problem. European Journal of Operational Research, 2007, 176(2): 657-690.
  • 5Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(3): 265-298.
  • 6Moe R. GRIBB: branch-and-bound methods on the internet. In: Proceedings of the 5th International Conference on Parallel Processing and Applied Mathematics. Czestochowa, Poland: Springer, 2003. 1020-1027.
  • 7Umeyama S. An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 695-703.
  • 8Zhao G, Luo B, Tang J, Ma J. Using eigen-decomposition method for weighted graph matching. In: Proceedings of the 3rd International Conference on Intelligent Computing. Qingdao, China: Springer, 2007. 1283-1294.
  • 9Almohamad H A, Duffuaa S O. A linear programming approach for the weighted graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(5): 522-525.
  • 10Papadimitriou C H, Stciglitr K. Combinarorial Optimization Algorithms and Complexity. New Jersey: Prentice-Hall, 1982.

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部