期刊文献+

基于改进主动表现模型的人脸面部特征定位 被引量:1

Face Feature Location Based on Improved Active Appearance Models
下载PDF
导出
摘要 采用主成分分析(PCA)作为统计分析方法的主动表现模型(AAM)是建立二维可形变模型的有效方法。提出一种将改进的AAM用于人脸面部特征定位的新方法,并与传统AAM进行比较,实验证明此方法要优于传统AAM。 Active Appearance Model (AAM) is an effective method to build 2D deformable model for an object, which adopts Principal Component Analysis (PCA) as its statistical analysis. In this paper, a new approach of facial feature location based on improved AAM is proposed and compared with the facial feature location based on standard AAM. The experimental results demonstrate that this method has better performance than standard AAM.
出处 《电视技术》 北大核心 2009年第7期84-86,共3页 Video Engineering
基金 教育部博士点基金项目(20060359004) 教育部留学归国人员科研启动基金(413117)
关键词 独立成份分析 主动表现模型 主成份分析 人脸面部特征定位 independent component analysis active appearance model principal component analysis facial feature location
  • 相关文献

参考文献5

  • 1EDWARDS G J,LANITIS A,TAYLOR C J,et al.Statistical models of face images-improving specificity[J].Image and Vision Computing,1998,16:203-211.
  • 2EOOTES T F,EDWARDS G J,TAYLOR C J.Active appearance models[J].IEEE Trans.PAMI,2001,23(6):681-685.
  • 3COOTES T F,TAYLOR C J.Statistical models of appearance for medical image analysis and computer vision[EB/OL].[2009-01-20].http://www.isbe.man.ac.uk/~bim/Models/app_model.ps.gz.
  • 4UZUMCU M,FRANGI A F,JOHAN H C,et al.Independent component analysis in statistical shape models[J].Proceedings of SPIE,2003,5032:375-383.
  • 5CARDOSO J F.High-order contrasts for independent component analysis[J].Neural Computation,1999(11):157-192.

同被引文献13

  • 1胡永利,尹宝才,谷春亮,程世铨.基于形变模型的三维人脸重建方法及其改进[J].计算机学报,2005,28(10):1671-1679. 被引量:34
  • 2王成章,尹宝才,孙艳丰,胡永利.改进的基于形变模型的三维人脸建模方法[J].自动化学报,2007,33(3):232-239. 被引量:30
  • 3ZHA H B, WANG P. Realistic face modeling by registration of 3D mesh models and multi-view color images [C]//Proc. the 8th Int'l Conf. Computer Aided Design and Computer Graphics. Macao, China: Welfare Printing Limited, 2003: 217-222.
  • 4DECARLO D, METAXAS D, STONE M. An anthropometric face model using variational techniques[C]//Proc, the 25th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA : SIGGRA. 1998: 67-74.
  • 5LIU Z, ZHANG Z, JACOBS C, et al. Rapid modeling of animated faces from video [EB/OL].[2010-O5-25].http://citeseerx.ist.psu.edu/ viewdoe/download?doi= 10.1.1.37.420&rep=rep 1 &type=pdf.
  • 6AHLBERG J. CANDIDE-3: an updated parameterized faee[EB/OL]. [2010-05 -25] .http ://citeseerx.ist .psu .edu/vi ewdoc/summary?doi= 10.1. 1.33.5603.
  • 7BLANZ V, VETFER T. Face recognition based on fitting a 3D mor-phable model [J].IEEE Trans. Pattern Analysis and Machine Intelligence, 2003, 25(9) : 1063-1074.
  • 8ROMDHANI S. Face image amdysis using a multiple feature fitting strategy[D]. Brussel, The Kingdom of Belgium: University of Basel, 2005.
  • 9Multimedia and Intelligent Software Technology. Beijing Municipal Key Laboratory (MISKL-TR-05-FMFR-O01). The BJUT-3D largescale Chinese face database[EB/OL].[2010-05-20].http://www.bjut. edu.en/sei/muhimedia/mul -lab/3 dfaee/pdf/M ISKL -TR -05 -FMFR - 001.pdf.
  • 10COOTES T, TAYLOR C, COOPER D, et al. Active shape models: their training and application [J].Compute Vision and Image Understanding, 1995, 61 (1) : 38-59.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部