期刊文献+

一种新的多通道混合语音时域盲分离算法 被引量:2

Time-domain Blind Source Separation Algorithm of Mixed Speech Based on Component Clustering and Reconstruction
下载PDF
导出
摘要 卷积混合语音进行盲源分离时,不能直接应用独立分量分析(ICA)算法。采用一种新的卷积混合语音模型,对多通道混合语音使用近来提出的时域EFICA算法进行盲分离,然后利用聚类和重构算法来恢复源信号。通过真实语音实验表明,提出的算法能有效地分离混合语音信号。 BBS(Blind Source Separation) of convolution-mixed audio can not be applied directly to ICA(Independent Component Analysis) algorithm. A new convolution-mixed mode of the speech signal is used. Mixed audio multi- channel are processed using the recently proposed time-domain EFICA, then algorithm of clustering and reconstruction is used to restore the signal source. The experiments show that the algorithm can effectively separate mixed speech signal by the really audio.
出处 《电声技术》 2009年第7期60-62,72,共4页 Audio Engineering
基金 广西自然科学基金项目(0832007Z)
关键词 盲源分离 独立分量分析 聚类 重构 BSS ICA clustering reconstruction
  • 相关文献

参考文献9

  • 1HYVARINEN A,KARHUNEN J,OJA E.Independent Component Analysis[M].New York:JohnWiley sons,lnc,2001:391-406.
  • 2BUCHER H,AICHNER R,KELLERMANN W.A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics[J].IEEE Trans.on Speech and Audio Processing,2005,13 (1):120-134.
  • 3HYVARINEN A,KARHUNEN J,OJA E.独立分量分析[M].周宗潭,董国华,徐昕,等,译.北京:电子工业出版社,2007:313-315.
  • 4SPATH H.Cluster analysis algorithms for data recduction and classification of objects[M].Chichester:Ellis Horwood,1980.
  • 5KOLDOVSKY Z,TICHAVSKY P,OJA E.Efficient variant of algorithm fastlCA for independent component analysis attaining the cramer-Rao lower bound[J].IEEE Neural Networks,2006,17:1265-1277.
  • 6KOLDOVSKY Z,TICHAVSKY P.Time-domain blind audio source separation using advanced ICA methods[C]// Proceedings of Inter Speech 2007:the 8th Annual Conference of the International Speech Commuication Assocation.Belgium:[s.n.],2007:846-849.
  • 7VINCENT E,GRIBONVAL R,FEVOTI'E C.Performance measurement in blind audio source separation[J].IEEE Trans on Speech and Audio Separation,2006,14(4):1462-1469.
  • 8PARRA L,SPENCE C.Convolutive blind separation of non-stationary source[J].IEEE Trans.on Speech and Audio Processing,2000,8(3):320-327.
  • 9HIROSHI Sawada.Convolutive blind source separation for more than two sources in the frequency domain[EB/OL].(2004 -07 -09)[2008 -09 -23].http://www.kecl.ntt.co.jp/icl/ signal/sawada/demo/bss2to4/index.html,2004,

共引文献1

同被引文献16

  • 1焦卫东,杨世锡,钱苏翔,严拱标.基于FFT-MCC分析的ICA(BSS)盲不确定性消除[J].中国机械工程,2006,17(7):673-677. 被引量:8
  • 2邓娟,李宏.一种基于信息最大化的自适应变步长盲源分离算法[J].电子测量技术,2007,30(6):15-18. 被引量:5
  • 3CHOI S, CICHOCKI A, PARK H, et al. Blind source separation and independent component analysis: A review [ J]. Neural Information ProcessingLetters and Reviews, 2005,6(1) :1 -54.
  • 4CICHOCKI A, AMARI S. Adaptive blind signal and image processing: learning algorithms and applications [ M ]. New York : John Wiley&Sons, 2002.
  • 5LINSKER R. A local learning rule that enables information maximization for arbitrary input distributions [ J]. Neural Computation, 1988 ( 12 ) : 1661-1665.
  • 6BELL A, SEJNOWSKI T. An information maximization ap-proach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995 (7) : 1129-1159.
  • 7职振华.语音盲分离算法的研究[D].太原:太原理工大学,2007.
  • 8AMARI S. Natural gradient works efficiently in learning [ J]. Neural Computation, 1998 (10) :251-276.
  • 9L1 H L,ADALI T. Gradient and fixed-point complex ICA al- gorithms based on kurtosis maximization [ C ]//Machine Learning for Signal Processing. Maynooth, Ireland: [ s. n. ] ,2006.
  • 10NOVEY M, ADAH T. Complex ICA by negentropy maximi- zation [ J ]. IEEE Transactions on Neural Networks, 2008 (10) :596 -609.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部