摘要
改进三角元的积分恒等式,使之适用于拟一致四面体元,借此证明了泊松方程四面体线元梯度有超逼近现象,函数值Richardson外推可以提高精度.
In this paper, the integral identities of triangular linear elements are improved, so they also apply to quasi-uniform tetrahedral linear elements. Then the authors show that the tetrahedral linear finite element solution uh and the tetrahedral linear interpolation u1 have superclose gradient for Poisson Equation and obtain the improved accuracy through Richardson extrapolation of the tetrahedral linear finite element solution uh.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第13期215-220,共6页
Mathematics in Practice and Theory
关键词
四面体线元
积分恒等式
超逼近
外推
tetrahedral linear finite element
integral identity
superclose
extrapolation