期刊文献+

三维矩形域上泊松方程四面体线元的超逼近与外推 被引量:8

Superclose and Extrapolation of the Tetrahedral Linear Finite Elements for Poisson Equation in Three-dimensional Rectangular Field
原文传递
导出
摘要 改进三角元的积分恒等式,使之适用于拟一致四面体元,借此证明了泊松方程四面体线元梯度有超逼近现象,函数值Richardson外推可以提高精度. In this paper, the integral identities of triangular linear elements are improved, so they also apply to quasi-uniform tetrahedral linear elements. Then the authors show that the tetrahedral linear finite element solution uh and the tetrahedral linear interpolation u1 have superclose gradient for Poisson Equation and obtain the improved accuracy through Richardson extrapolation of the tetrahedral linear finite element solution uh.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第13期215-220,共6页 Mathematics in Practice and Theory
关键词 四面体线元 积分恒等式 超逼近 外推 tetrahedral linear finite element integral identity superclose extrapolation
  • 相关文献

同被引文献64

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部