摘要
利用Avery-Peterson不动点定理,在射线上讨论了如下p-Laplacian算子方程多点边值问题,{(φp(u′))′(t)+q(t)f(t,u(t),u′(t))=0,0<t<∞ u(0)=sum from i=1 to (n-2) αiu′(ξi),u′(∞)=0得到三个正解存在性定理.
We consider the multipoint boundary value problem for the one-dimensional p-Laplacian {(φp(u′))′(t)+q(t)f(t,u(t),u′(t))=0,0〈t〈∞ u(0)=∑i-1^n-2aiu'(ξi),u'(∞)=0 By using a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第13期260-265,共6页
Mathematics in Practice and Theory
基金
自然科学基金(10371006)
山西省自然科学基金(2007011019)