期刊文献+

曲线刃车刀片热力耦合场分析及其高速切削性能评价 被引量:1

Thermal-coupling field analysis and high-speed cutting quality evaluation for the curve-edge turning insert
下载PDF
导出
摘要 在曲线刃车刀片刃口刃形对高速切削过程影响研究基础上,进行曲线刃车刀片高速切削加工热力耦合场分析,获得刀片刃形曲率半径与刃口钝圆半径对热力耦合场分布的影响规律,运用模糊物元方法对曲线刃车刀片高速切削铝合金性能进行评判。结果表明,高速切削铝合金时,随着刃形曲率半径增大,刀尖处热力耦合场分布得到明显改善;参与切削的切削刃热力耦合场其分析结果随刃口钝圆半径减小而减小;由刀尖向外扩展,刃形曲率半径由15mm减小至9mm,刃口钝圆半径为0.02mm的车刀片的高速切削性能得到增强,该结果为进行铝合金薄壁件高速车削加工技术研究提供了依据。 On the basis of the research for the high-speed cutting process of the curve-edged turning tool blade cutting edge form, analysis the thermal mechanical coupling field of the curve-edge turning insert cutting at high speed, attained the distribution law of the blade edge form's curvature radius and blunt round radius in the thermal-mechanical coupling field, and evaluated the per- formance of curve-edged turning insert in high-speed cutting using the method of fuzzy matter-element. The results showed that during cutting aluminum alloy at high-speed, the thermal coupling field distribution at tool nose was improved obviously ; from tool nose extended outward, as the edge form curvature radius decreasing from 15mm to 9mm, the turning insert with the cutting edge blunt radius of 0.02mm has good high-speed cutting performance. This result provided evidence for the research on high-speed cutting processing-technology of thin-wall part of aluminum alloy.
出处 《现代制造工程》 CSCD 北大核心 2009年第7期54-58,共5页 Modern Manufacturing Engineering
关键词 高速车削 切削刃 曲率半径 热力耦合场 high-speed cutting cutting edge curvature radius thermal-coupling field
  • 相关文献

参考文献1

二级参考文献12

  • 1Usui E, Shirakashi T. Mechanics of machining-from descriptive to predictive theory, on the art of cutting metals-75 years later[A]. ASME-PED 7[C], 1982. 13-15.
  • 2Komvopoulos K, Erpenbeck S A. Finite element modeling of orthogonal cutting[J]. ASME J Eng Ind, 1991, 113 (3): 253-267.
  • 3Zhang B, Bagchi A. Finite element simulation of chip formation and comparison with machining experiment[J]. ASME J Eng Ind, 1994, 116(3): 289-297.
  • 4Shih A J. Finite element simulation of orthogonal metal cutting[J]. ASME J Eng Ind, 1995, 117(1): 84-93.
  • 5Iwata K, Osakada A, Terasaka Y. Process modeling of orthogonal cutting by rigid-plastic finite element method[J]. J Eng Mater Technol, 1984, 106(1): 132-138.
  • 6Carroll J T, Strenkowski J S. Finite element models of orthogonal cutting with application to single point diamond turning[J]. Int J Mech Sci, 1988, 30(11): 899-920.
  • 7Ceretti J E, Fallbehmer P, Wu W T, et al. Application of 2D FEM on chip formation in orthogonal cutting[J]. J Mater Process Technol,1996, 59(2): 169-181.
  • 8Lin Z C, Lin S Y. A coupled finite element model of thermo-elastic-plastic large deformation for orthogonal cutting[J]. ASME J Eng Mater Technol, 1992, 114(2): 218-226.
  • 9Yamada Y. Visco-elasticity plasticity[M]. Baifukan, Japan, 1980.
  • 10Hibbit D, Karlsson B, Sorenson P.ABAQUS theory ma-nual (ver 5.8) [M].USA: Hibbit, Karlsson & Sorenson Inc,1999.

共引文献49

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部