期刊文献+

股票综合评价的符号数据PCA方法 被引量:2

Integrated Evaluation of Stocks by PCA for Symbolic Data
原文传递
导出
摘要 符号数据分析是一种新兴的数据挖掘技术,区间数是最常用的一种符号数据。研究应用区间型符号数据的PCA方法来评价股票的市场综合表现问题。首先介绍了符号数据分析的基本理论。接下来研究了区间数据样本的经验描述统计量的计算,并基于经验相关矩阵,给出了区间主成分分析的算法,该算法最终得到区间数表达形式的主成分取值。最后选取上海证券交易市场20支股票在某一周上的交易数据,进行了实证研究,基于区间主成分得分的矩形图表示,将20支股票按其市场综合表现分成了四类。 Symbolic data analysis is a new data mining technology and interval number is a most important type of symbolic data. Integrated evaluation on stocks' integrated behavior in the market is studied by principal component analysis (PCA) for interval-valued symbolic data. The basic theory of symbolic data analysis is introduced. Empirical descriptive statistics for interval data is studied. Based on the empirical correlation matrix, an arithmetic of PCA for interval data is put forward which gives interval principal components values. Finally, an empirical research on twenty stocks' transaction data in a certain week of Shanghai financial market is done. Based on rectangle show of the interval-valued principal components, the 20 stocks are classified into four groups according to their integrated behavior in the market.
出处 《数理统计与管理》 CSSCI 北大核心 2009年第4期730-735,共6页 Journal of Applied Statistics and Management
基金 国家自然科学基金青年基金资助项目(70701026)
关键词 符号数据分析 主成分分析 区间数 股票 symbolic data analysis (SDA), principal component analysis (PCA), interval number, stock
  • 相关文献

参考文献3

二级参考文献9

  • 1郭均鹏,吴育华.区间数据包络分析的决策单元评价[J].系统工程理论方法应用,2004,13(4):339-342. 被引量:23
  • 2RichardA.Johnson Deanw.Wichern(美) 陆璇译.实用多元统计分析[M].北京:清华大学出版社,2001年4月第4版..
  • 3Andersen P,Petersen N C.A procedure for ranking efficent units in data envelopment analysis[J].Management Science,1993,39(10):1261-1264.
  • 4Cooper W W,Park K S,Yu G.IDEA and ARIDEA:Models for dealing with imprecise data in DEA[J].Management Science,1999,45(4):597-607.
  • 5Kao C,Liu S T.Prediciting bank performance with financial forecasts:A case of Taiwan commercial banks[J].Journal of Banking and Finance,2004,28(10):2353-2368.
  • 6Chanas S,Kuchta D.Multiobjective programming in optimization of the interval objective functions-A generalized approach[J].European Journal of Operational Research,1996,94:594-598.
  • 7Atanu S,Tapan K P,Debjani C.Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming[J].Fuzzy Sets and Systems,2001,119:129-138.
  • 8徐泽水,达庆利.一种基于可能度的区间判断矩阵排序法[J].中国管理科学,2003,11(1):63-65. 被引量:55
  • 9罗洪浪,王浣尘,田中甲.基于DEA的封闭式基金业绩评价[J].中国管理科学,2003,11(5):20-25. 被引量:28

共引文献72

同被引文献37

  • 1李美娟,袁宁,陈磊.基于投影法和夹角度量法的改进TOPSIS[J].系统科学与数学,2020(9):1614-1627. 被引量:9
  • 2于春海,樊治平.一种基于区间数多指标信息的FCM聚类算法[J].运筹与管理,2004,13(4):12-16. 被引量:6
  • 3严明义.生活质量的综合评价:基于数据函数性特征的方法[J].统计与信息论坛,2007,22(2):13-17. 被引量:5
  • 4Billard L, Diday E. Analysis of Symbolic Data [M]. New York: Springer-Verlag, 2000: 1-23.
  • 5Billard L, Diday E. Symbolic Data Analysis: Conceptual Statistics and Data Mining [M]. England John Viley & Sons Ltd, 2006: 242-243.
  • 6Diday E, Noirhomme-Fraiture M. Symbolic Data Analysis and the SODAS Software [M]. England John Wiley & Sons Ltd, Chichester, 2008: 3-37.
  • 7Irpino A, Verde R. Dynamic clustering of interval data using a Wasserstein-based distance [J]. Pattern Recognition Letters, 2008, 29(11): 1648-1658.
  • 8De Carvalho F D A T, Lechevallier Y. Partitional clustering algorithms for symbolic interval data based on single adaptive distances [J}. Pattern Recognition Letters, 2009, 42(7): 1223 1236.
  • 9De Carvalho F D A T, Tendrio C P. Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances [J]. Fuzzy Sets and Systems, 2010, 161(23): 2978 299.
  • 10De Carvalho F D A T, Brito P, Bock H, Dynamic clustering for interval data based on L2 distance [J]. Computational Statistics, 2006, 21(2): 231-250.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部