期刊文献+

GPU加速3D流场特征提取与多分辨率绘制 被引量:2

GPU-Accelerated Feature Extraction and Multi-resolution Visualization for Complex 3D Fluid Field
下载PDF
导出
摘要 由于视线方向上的网格单元前后相互影响,导致3D流场可视化面临遮挡和混乱问题,为此提出一种基于流场特征的多分辨率绘制方法.首先利用基于GPU的BP网络流场特征提取方法对流场典型特征或用户关注的新特征进行选取、训练和识别;在此基础上,利用Voronoi图技术对特征数据构造特征树;最后基于鱼眼视图多分辨率技术进行绘制.对绘制和性能进行测试的实验结果表明,该方法能有效地提取流场特征,降低遮挡和混乱对可视化效果影响. Due to the mutual influence of grid points on the view direction, visualization to a 3D fluid field often has problem of occlusion and cluttering. In this paper, we propose a novel approach for solving the occlusion and cluttering problem based on multi-resolution rendering. By the solution, first, a new fluid feature extraction method is presented by taking advantage of the strong non-linear ability of the neural network. Then based On the flow feature detected, a Voronoi graph method is used to organize field data. Finally, the field data is visualized by the "fisheye views" method. The test result of the visualization effects and performance to our method shows that our proposed approach is feasible and efficient in solving the occlusion and cluttering problem.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第7期893-899,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2009CB723803) 国家"八六三"高技术研究发展计划(2006AA01Z309)
关键词 3D流场 BP神经网络 特征提取 多分辨率 VORONOI图 鱼眼视图 3D flow field BP neutral network feature extraction multi-resolution Voronoi graph fisheye views
  • 相关文献

参考文献1

二级参考文献13

  • 1Helman J L, Hesselink L. Visualizing vector field topology in fluid flows [J]. IEEE Computer Graphics and Applications, 1991, 11(3): 36-46
  • 2Scheuermann G, Hagen H, Kruger H, et al. Visualization of higher order singularities in vector fields[C]//Proceedings of IEEE Visualization, Phoenix, 1997:67-74
  • 3Scheuermann G, Tricoche X, Hagen H. C^1-interpolation for vector field topology visualization[C]//Proceedings of IEEE Visualization, San Francisco, 1999:271-278
  • 4Wischgoll T, Scheuermann G. Detection and visualization of closed streamlines in planar flows[J]. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(2):165-172
  • 5Sadlo F, Peikert R, Parkinson E. Vorticity based flow analysis and visualization for Pelton turbine design optimization[C] //Proceedings of IEEE Visualization, Austin, 2004:179-186
  • 6Tzeng F Y, Lum E B, Ma K L. A novel interface for higherdimensional classification of volume data[C]//Proceedings of IEEE Visualization, Seattle, 2003 : 505-512
  • 7Tzeng F Y, Ma K L. A cluster-space visual interface for arbitrary dimensional classification of volume data [C] // Proceedings of the Joint Symposium on Visualization, Eurographics-IEEE TCVG Konstanz , 2004:17-24
  • 8Tzeng F Y, Ma K L. Opening the black box - data driven visualization of neural networks[C] //Proceedings of the IEEE Visualization, Minneapolis, 2005:383-390
  • 9Tzeng F Y, Lum E B, Ma K L. An intelligent system approach to higher dimensional classification of volume data[J]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(3): 273-284
  • 10Kaufman A, Mueller K. The visualization handbook[M]. Oxford UK: Elsevier Inc, Academic Press, 2005:295-309

共引文献2

同被引文献23

  • 1王海晖,李亚,曾坤,林倞.基于计算机视觉的自然图像自动线描系统[J].华中科技大学学报(自然科学版),2008,36(S1):207-209. 被引量:2
  • 2De Angelis G, Badavi F F, Clem J M, et al. Modeling of the lunar radiation environment [J]. Nuclear Physics B, 2007, 166(Suppl) : 169-183.
  • 3Pham T T, EI-Genk M S. Dose estimates in a lunar shelter with regolith shielding [J]. Aeta Astronautica, 2009, 64 (7[ 8) : 697-713.
  • 4Halekas J S, Delory G T, Lin R P, et al. Lunar surface charging during solar energetic particle events: measurement and prediction [J]. Journal of Geophysical Research, 2009, 114(A5) : A05110. 1-A05110.16.
  • 5Wilson J K, Mindillo M, Spence H E. Magnetospheric influence on the moon's exosphere [J]. Journal of Geophysical Research, 2006, 111(A7) : A07207. 1-A07207.7.
  • 6Sarantos M, Killen R M, Sharma A S, et al. Influence of plasma ions on source rates for the lunar exosphere during passage through the earth's magnetosphere [J]. Geophysical Research Letters, 2008, 35(4): L04105-L04109.
  • 7Krishnan H, Garth C, Joy K I. Time and streak surfaces for flow visualization in large time-varying data sets [J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6) : 1267-1274.
  • 8Li H W, Fu C W, Hanson A J. Visualizing multiwavelength astrophysical data [J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1555-1562.
  • 9Kooima R, Leigh J, Johnson A, et al. Planetary-scale terrain composition [J]. IEEE Transactions on Visualization and Comouter Graphics, 2009, 15(5): 719-733.
  • 10SHue J -H, CHao J K, Fu H C, etal. A new functional form to study the solar wind control of the magnetopause size and shape [J]. Journal of Geophysical Research, 1997, 102(A5) : 9497-9511.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部