期刊文献+

代数双曲B-样条的几何构造

Geometric Construction of Algebraic Hyperbolic B-Spline
下载PDF
导出
摘要 样条曲线的升阶是CAD系统相互沟通必不可少的手段之一.由于双阶样条的升阶算法具有割角性质,因此具有鲜明的几何意义.以代数双曲B-样条为例,证明了样条曲线经过不断升阶之后,其控制多边形序列会像Bézier曲线一样收敛到初始的代数双曲B-样条曲线.利用文中得到的结果,就可以像Bézier曲线一样,通过几何割角法生成B-样条曲线?双曲线?悬链线等常用曲线. Degree elevation of spline curves is an essential technique for communication between CAD systems. Since degree elevation algorithm by bi-order Spline can be interpreted as corner cutting process, degree elevation of Spline curve has obvious geometric meaning. Taking algebraic hyperbolic B-spline curve as an example, it is proved that Spline curve's control polygon sequence will converge to the initial algebraic hyperbolic B-spline curve after degree elevation continually. By this conclusion, common curves including B-spline, hyperbola and catenary curves can be obtained by geometric corner cutting as Bezier curves.
作者 朱平 汪国昭
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第7期912-917,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60773179) 国家“九七三”重点基础研究发展计划项目(2004CB318000)
关键词 AH B-样条 双阶AHB-样条 升阶 几何收敛 积分估计 几何生成 AH B-spline bi-order AH B-spline degree elevation geometric convergence integral estimation geometric construction
  • 相关文献

参考文献4

二级参考文献16

  • 1秦开怀.非均匀B样条曲线升阶的新算法[J].计算机学报,1996,19(7):537-542. 被引量:10
  • 2秦开怀.B 样条曲线升阶经典算法中的问题及其解决办法[J].清华大学学报(自然科学版),1997,37(4):4-6. 被引量:4
  • 3PRAUTZSCH H. Degree elevation of B-spline curves [J]. Comput Aided Geom Des, 1984,1(3):193-198.
  • 4PRAUTZSCH H, PIPER B. A fast algorithm to raise the degree of spline curves D]. Comput Aided Geom Des, 1991,8(4):253-265.
  • 5COHEN E, LYCHE T, SHUMAKER L L.Algorithms for degree-raising of splines [J]. ACM Trans on Graphics, 1985,4(3): 171-181.
  • 6PIEGL L, TILLER W. Software-engineering approach to degree elevation of B-spline curves [J].Comput Aided Des, 1994,26(1) : 17-28.
  • 7Wang Guo-Zhao, Chen Qin-Yu, Zhou Ming-Hua. NUAT B-spline curves. Computer Aided Geometric Design, 2004, 21(2) : 193-205.
  • 8Li Ya-Juan, Wang Guo-Zhao. Two kinds of B-basis of the algebraic hyperbolic space. Journal of Zhejiang University, 2005, 6A(7): 750-759.
  • 9Barry P J, Goldman R N. A recursive proof of a B-spline identity for degree elevation. Computer Aided Geometric Design, 1988, 5(2): 173-175.
  • 10Cohen E, Lyche T, Schumaker L. Algorithms for degree raising of splines. ACM Transactions on Graphics, 1985, 4(3) : 171-181.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部