期刊文献+

有理参数曲线的近似恰当化

Approximate Proper Reparametrization of Rational Curves
下载PDF
导出
摘要 有理参数曲线的恰当性是曲线的基本性质,虽然其在有理系数情况下已经有完备的结果,但在工程和CAGD应用中常常得到带误差浮点系数的有理表示形式.为此,讨论了这类有误差的有理参数曲线,定义了近似非恰当参数形式和近似非恰当指数,并通过半代数系统计算近似非恰当指数;在给出近似非恰当指数的同时,得到近似最大公因子.最后基于最小二乘法给出近似参数有理变换表示,计算出曲线恰当的近似有理参数表示. Properness of a parameterization is a basic property of rational parametric curves and it has been well studied when the coefficients of the parameterization are rational. However, such coefficients in engineering and CAGD are often represented with float numbers with errors. This work gives an algorithm to simplify the rational curves in this situation. After the approximate proper index is defined, it is computed by solving the semi-algebra system. The greatest common divisor is obtained according to the computing process of approximate proper index. Finally, the approximate proper reparameterization is obtained by the least squares method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第7期924-929,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(90718041) 中国科学院数学机械化重点实验室开放课题
关键词 有理参数曲线 恰当参数化 近似非恰当指数 近似最大公因子 半代数系统 rational curves approximate proper parameterization approximate improper index approximate GCD semi-algebraic system
  • 相关文献

参考文献8

  • 1Perez-Diaz S.Onthe Problemof proper reparametrizationfor rational curves and surfaces[].Computer Aided Geometric Design.2006
  • 2Walker,R. J. Algebraic Curves . 1950
  • 3Gao X S,Chou S C.Implicitization of rational parametric equations[].Journal of the Symbolic Computation.1992
  • 4Sederberg,T. W.Improperly parametrized rational curves[].Computer Aided Geometric Design.1986
  • 5Van der,Waerden,B L. Einfürung in Die Algebraischen Geometrie . 1973
  • 6Chionh E W,Goldman R N.Degree,multiplicity,and inver- sion formulas for rational surfaces using U-resultants[].Com- puter Aided Geometric Design.1992
  • 7Sendra R J,Winkler F.Tracing index of rational curveparametrizations[].Computer Aided Geometric Design.2001
  • 8R. M. Corless,S. M. Watt and Zhi Lihong.QR Factoring to Compule the GCD of Univariate Approximate Polynomials[].IEEE Transactions on Signal Processing.2004

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部