期刊文献+

基于LIDAR数据的森林参数反演方法研究 被引量:31

A Study of Forest Parameters Mapping Technique Using Airborne LIDAR Data
原文传递
导出
摘要 森林结构参数诸如林分平均高、平均冠幅、平均胸径、林分密度、地上生物量等的空间分布对于森林可持续经营管理具有重要意义。以黑河流域祁连山大野口典型森林区为研究区,采用高密度LIDAR小脚印点云数据,在进行单木结构参数提取的基础上,按20 m×20 m大小的网格进行了小区域森林参数反演研究。首先由LIDAR点云数据生成冠层高度模型(Canopy Height Model,CHM),从CHM中估测单株木结构参数树的位置、树高、冠幅。然后采用多元逐步回归分析法建立样地(20 m×20 m)尺度上LIDAR估测的平均树高、冠幅等与实测森林参数(林分平均高、林分算数平均高、平均冠幅、平均胸径、林分密度、地上生物量)之间的关系。结果表明,林分平均高、林分算术平均高、地上生物量的估测方程精度较高,R2均大于0.7,平均冠幅、平均胸径、林分密度的估测方程R2均大于0.5,根据建立的方程得到了森林参数的空间分布图。高密度LIDAR数据可以得到较高精度的森林参数空间分布图,对于森林可持续经营管理以及林相图的更新等具有重要意义,同时对小流域森林水文科学的研究具有重要的应用价值。 Estimating spatial forest stand variables such as mean height, mean crown diameter, mean diameter breast height DBH, tree density and aboveground bioInass is important for sustainable forest management. This study aimed to estimate forest stand variables in coniferous tree species of Picea crassifolia stand in the Qilian Mountain, western China from single tree detection using small-footprint airborne LIDAR data. Based on the LIDAR data, a canopy height model (CHM) was firstly computed as the difference between tree canopy hits and the LIDAR terrain elevation values. In this study, a double-tangents crowns recognition algorithm was used to extract single tree location, height and crown polygon. Stepwise multiple regression models were used to develop equations relating LIDAR-derived parameters, such as tree height, stand density and crown width, with observed forest parameters for each sample plot. The precision of equation for estimating mean stand height, tree density and aboveground biomass is high, with R^2 bigger than 0.7. These results showed that the LIDAR data was useful for forest stand variables. Finally, the spatial forest stand variables maps were established using the stepwise multiple regression equations. The results showed that high-density LIDAR data could be used to get forest variables distribution maps with relatively high precision, which was of important practical significance for sustainable forest management and update of forest form map, and for forest hydrological science research in small basin.
出处 《地球科学进展》 CAS CSCD 北大核心 2009年第7期748-755,共8页 Advances in Earth Science
基金 国家重点基础研究发展计划项目“陆表生态环境要素主被动协同反演理论与方法”(编号:2007CB714404) 中国科学院西部行动计划(二期)项目“黑河流域遥感-地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09)资助
关键词 LIDAR 森林参数反演 黑河流域大野口 LIDAR Forest parameters estimation Dayekou area in the Heihe River Basin.
  • 相关文献

参考文献11

  • 1庞勇,李增元,陈尔学,孙国清.激光雷达技术及其在林业上的应用[J].林业科学,2005,41(3):129-136. 被引量:159
  • 2Mats Nilsson.Estimation of tree heights and stand volume using an airborne LIDAR systems[J].Remote Sensing of Environment,1996,56(1):1-7.
  • 3Means J E.Acker S A,Harding D J,et al.Use of large-footprint scanning airborne LIDAR to estimate forest stand characteristics in the Western Cascades of Oregon[J].Remote Sensing of Environment,1999,67(3):298-308.
  • 4Popescu S C,Wynne R H,Nelson R F.Estimating plot-level tree heights with LIDAR-local filtering with a canopy-height based variable window size[J].Computers and Electronics in Agriculture,2002,37(13):71-95.
  • 5Lefsky M A,Harding D,Cohen W B,et al.Surface LIDAR remote sensing of basal area and bionums in deciduous forests of eastern Maryland,USA[J].Remote Sensing of Environment,1999,67(1):83-98.
  • 6Drake J B,Dubayah R O,Clark D B,et al.Estimation of tropical forest structural characteristics using large-footprint LIDAR[J].Remote Sensing of Environment,2002,79(23):305-319.
  • 7Lim K,Paul Treilz,Ian Morrison,et al.Estimating aboveground biomase using LIDAR remote sensing[C]//Remote Sensing for Agriculture,Ecosystems,and Hydrology IV Conference.Crete:Asia Pelagia,Greece,2002.
  • 8庞勇,孙国清,李增元.林木空间格局对大光斑激光雷达波形的影响模拟[J].遥感学报,2006,10(1):97-103. 被引量:24
  • 9李新,马明国,王建,刘强,车涛,胡泽勇,肖青,柳钦火,苏培玺,楚荣忠,晋锐,王维真,冉有华.黑河流域遥感-地面观测同步试验:科学目标与试验方案[J].地球科学进展,2008,23(9):897-914. 被引量:126
  • 10王金叶,车克钧,傅辉恩,常学向,宋采福,贺红元.祁连山水源涵养林生物量的研究[J].福建林学院学报,1998,18(4):319-323. 被引量:29

二级参考文献107

共引文献377

同被引文献518

引证文献31

二级引证文献449

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部