摘要
Totally more than 500 yeast strains were isolated from seawater, sea sediments, mud of sea salterns, marine fish guts and marine algae. The results of routine and molecular biology identification methods show that nine strains among these marine yeasts belong to Aureobasidium pullulans, although the morphologies of their colonies are very different. The marine yeasts isolated from different marine environments indicate that A. pullulans is widely distributed in different environmental conditions. These Aureo-basidium pullulans strains include A. pullulans 4#2, A. pullulans N13d, A. pullulans HN3-11, A. pullulans HN2-3, A. pullulans JHSc, A. pullulans HN4.7, A. pullulans HN5.3, A. pullulans HN6.2 and A. pullulans W13a. A. pullulans 4#2 could produce cellulase and single cell protein. A. pullulans N13d could produce protease, lipase, amylase and cellulase. Both A. pullulans HN3-11 and A. pullulans HN2-3 were able to produce protease, lipase and cellulase. A. pullulans JHSc could secrete cellulase and killer toxin. Both A. pullulans HN4.7 and A. pullulans HN5.3 could yield lipase and cellulase. A. pullulans W13a was able to secrete extracellular amylase and cellulase while A. pullulans HN4.7 and A. pullulans N13d could produce siderophores. This means that different A. pullulans strains from different marine environments have different physiological characteristics, which may be applied in many different biotechnological industries.
Totally more than 500 yeast strains were isolated from seawater, sea sediments, mud of sea salterns, marine fish guts and marine algae. The results of routine and molecular biology identification methods show that nine strains among these marine yeasts belong to Aureobasidium pullulans, although the morphologies of their colonies are very different. The marine yeasts isolated from different marine environments indicate that A. pullulans is widely distributed in different environmental conditions. These Aureo-basidium pullulans strains include A. pullulans 4^# 2, A. pullulans N 13d, A. pullulans HN3-11, A. pullulans HN2-3, A. pullulans JHSc, A. pullulans HN4.7, A. pullulans HN5.3, A. pullulans HN6.2 and A. pullulans W13a. A. pullulans 4^#2 could produce cellulase and single cell protein. A. pullulans N13d could produce protease, lipase, amylase and cellulase. Both A. pullulans HN3-11 and A. pullulans HN2-3 were able to produce protease, lipase and cellulase. A. pullulans JHSc could secrete cellulase and killer toxin. Both A. pullulans HN4.7 and A. pullulans HN5.3 could yield lipase and cellulase. A. pullulans W13a was able to secrete extracellular amylase and cellulase while A. pullulans HN4.7 and A. pullulans N13d could produce siderophores. This means that different A. pullulans strains from different marine environments have different physiological characteristics, which may be applied in many different biotechnological industries.
基金
supported by grant No. 30771645 from the National Natural Science Foundation of China